
Artificial
Intelligence

Module A

Unit #6

cluster

classification

Module A Unit #6 cluster classification

Introduction to cluster classification

The index.html file

Sketch A6.1 starting sketch

Sketch A6.2 creating the model

Sketch A6.3 adding the options

Sketch A6.4 training data

Sketch A6.5 target label

Sketch A6.6 collect training data

Sketch A6.7 button

Sketch A6.8 training

Sketch A6.9 normalisation

Sketch A6.10 adding a bit of colour

Sketch A6.11 a state of mind

Sketch A6.12 classifying

Content

AI module A unit #6 of 2 38 www.elegantAI.org

This is a supervised learning model. We are going to click on the canvas in
four areas. In each quadrant we will create a set of ten circles clustered
together, each set of circles will be labelled A, B, C and D. We will then
train it with ml5.js and when the training is complete we will click on the
canvas and it will predict which lettered circle should be at that point on
the canvas.

🀄 This is a classification task.

🀄 It will classify each circle A, B, C or D.

Introduction to cluster classification with ml5.js

AI module A unit #6 of 3 38 www.elegantAI.org

The index.html file needs the ml5.js library

The index.html file

<!DOCTYPE html>

<html lang="en">

 <head>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.11.1/p5.js"></script>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.11.1/addons/p5.sound.min.js"></script>

 <script src="https://unpkg.com/ml5@1/dist/ml5.min.js"></
script>

 <link rel="stylesheet" type="text/css" href="style.css">

 <meta charset="utf-8" />

 </head>

 <body>

 <main>

 </main>

 <script src="sketch.js"></script>

 </body>

</html>

AI module A unit #6 of 4 38 www.elegantAI.org

We have our bog standard starting sketch

Sketch A6.1 starting sketch

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

}

AI module A unit #6 of 5 38 www.elegantAI.org

Getting our neural network setup. We are going to use ml5.js default
hyperparameter settings for the moment.

🗒 Notes

This just checks everything is working as it should when you run it.

🌻 Challenge

Think about giving your model a different name

🛠 Code Explanation

Sketch A6.2 creating the model

let nn

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 nn = ml5.neuralNetwork()

}

function draw()

{

 background(220)

}

let nn We declare a variable name for our neural
network

ml5.setBackend("webgl")
The setBackend() function allows this to run in all
browsers, you could try “cpu” or even “gpu”
depending on your machine

nn = ml5.neuralNetwork() We define our neural network

AI module A unit #6 of 6 38 www.elegantAI.org

We use the options to clarify what we are doing and what the inputs,
outputs are. We tell it what task it is going to perform classification
or regression. We will define the inputs and the outputs.

🗒 Notes

The options give you possibility of fine tuning the neural network. In this
case we will have two inputs, the x and y co-ordinates and four outputs,
A, B, C and D, which are the labels. Sometimes you don’t even need to
specify the inputs and outputs because the library can work it out anyway.
It is important to specify the task though. In this case it is a
classification task.

Sketch A6.3 adding the options

let nn

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 let options = {

 inputs: ['x', 'y'],

 outputs: ['label'],

 task: 'classification'

 }

 nn = ml5.neuralNetwork(options)

}

function draw()

{

 background(220)

}

AI module A unit #6 of 7 38 www.elegantAI.org

🛠 Code Explanation

let options = {...} Defining the options

inputs: ['x', 'y'] The inputs are an array of x and y values

outputs: ['label'] The outputs are labels A, B, C or D

task: 'classification' The task is a classification

nn = ml5.neuralNetwork(options) The options are attributed to the neural
network

AI module A unit #6 of 8 38 www.elegantAI.org

We are going to create a mousePressed() function to collect training
data. We need to move the background() into setup() and remove the
draw() function because we will do all the drawing in the
mousePressed() function. We will start with a default letter A and place
it in a blue circle.

Sketch A6.4 training data

let nn

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 let options = {

 inputs: ['x', 'y'],

 outputs: ['label'],

 task: 'classification'

 }

 nn = ml5.neuralNetwork(options)

 background(220)

}

// function draw()

// {

// background(220)

// }

function mousePressed()

{

 fill(0, 0, 255, 100)

 circle(mouseX, mouseY, 25)

 textAlign(CENTER, CENTER)

AI module A unit #6 of 9 38 www.elegantAI.org

🗒 Notes

If you click on the canvas you should get a circle with the letter A in the
centre of it like thus. This will form part of your data collection. For the
future sketches there will be no draw() function.

🛠 Code Explanation

 stroke(0)

 text('A', mouseX, mouseY)

}

function mousePressed() This function waits for the mouse to be pressed
and then actions the code in the function.

fill(0, 0, 255, 100) Gives a blue colour and the fourth argument is
the alpha making a it a little transparent

textAlign(CENTER, CENTER) This puts the letter in the very centre of the
circle

text('A', mouseX, mouseY) We place the text at the same co-ordinates as
the circle, at mouseX and mouseY

AI module A unit #6 of 10 38 www.elegantAI.org

AI module A unit #6 of 11 38 www.elegantAI.org

Figure A6.4

We already have the letter A by default but we want to collect three
more data points with target labels B, C and D, for this we will need a
keyboard input and the keyPressed() function. When you press the
letter on the keyboard (A, B, C or D) you activate that target label
letter. The function toUpperCase() will make it uppercase for you, so
you don’t need to set caps lock, the function does it for you.

Sketch A6.5 target label

let nn

let targetLabel = 'A'

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 let options = {

 inputs: ['x', 'y'],

 outputs: ['label'],

 task: 'classification'

 }

 nn = ml5.neuralNetwork(options)

 background(220)

}

function keyPressed()

{

 targetLabel = key.toUpperCase()

}

function mousePressed()

{

 fill(0, 0, 255, 100)

AI module A unit #6 of 12 38 www.elegantAI.org

🗒 Notes

Have about 10 (data points) per letter and try to cluster them together as
illustrated in the image below. The target label has the default letter A
but to get the other target labels, press the B, C or D keys first before
clicking on the canvas.

🌻 Challenges

1. You could have any labels for your targets

2. You could have more or less than the four suggested

🛠 Code Explanation

 circle(mouseX, mouseY, 25)

 textAlign(CENTER, CENTER)

 stroke(0)

 text(targetLabel, mouseX, mouseY)

}

let targetLabel = 'A' Defines a variable for the target label
and initialises it to A

function keyPressed()
This function waits for a key to be
pressed before actioning the code in the
function

targetLabel = key.toUpperCase()
Whatever key is pressed that is the new
target label until another key is pressed,
it capitalises any key pressed

text(targetLabel, mouseX, mouseY) Now it puts the default key A unless
another is pressed

AI module A unit #6 of 13 38 www.elegantAI.org

AI module A unit #6 of 14 38 www.elegantAI.org

Figure A6.5

Now we are going to do a bit of rearranging because we want to collect
the data points every time we click on the canvas. To do that we move the
inputs and outputs object arrays into the mousePressed() function and
then add the data to the neural network each time the mouse is clicked,
inputting the target label. We use the ml5.js function nn.addData().

Sketch A6.6 collect training data

let nn

let targetLabel = 'A'

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 let options = {

 // inputs: ['x', 'y'],

 // outputs: ['label'],

 task: 'classification'

 }

 nn = ml5.neuralNetwork(options)

 background(220)

}

function keyPressed()

{

 targetLabel = key.toUpperCase()

}

function mousePressed()

{

 let inputs = {

 x: mouseX,

AI module A unit #6 of 15 38 www.elegantAI.org

🗒 Notes

Just to clarify, every time you click and add a circle (with a target label
letter) to the canvas that data is passed to the neural network. You may
notice that we didn’t call the outputs by that name. This is because we
created a new variable name (target) for the output.

🌻 Challenge

If you want to see the data produced then add this line of code:
console.log(inputs, targetLabel)

at the end of the mousePressed() function, this is not essential but
interesting (do one for each letter)

🛠 Code Explanation

 y: mouseY

 }

 let target = {

 label: targetLabel

 }

 nn.addData(inputs, target)

 fill(0, 0, 255, 100)

 circle(mouseX, mouseY, 25)

 textAlign(CENTER, CENTER)

 stroke(0)

 text(targetLabel, mouseX, mouseY)

}

nn.addData(inputs, target)

This function adds the data to the neural
network. Inputs are the x and y co-ordinates and
the output is called target which is the label
(letter)

AI module A unit #6 of 16 38 www.elegantAI.org

We are going to use the data to train our model but first we are going to
create a button that when we press it we train() the model. But first
will just get a console message to make sure the button is working.

Sketch A6.7 button

let nn

let targetLabel = 'A'

let button

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 let options = {

 task: 'classification'

 }

 nn = ml5.neuralNetwork(options)

 background(220)

 button = createButton('train')

 button.style('font-size', '30px')

 button.mousePressed(train)

}

function keyPressed()

{

 targetLabel = key.toUpperCase()

}

function mousePressed()

{

 let inputs = {

 x: mouseX,

AI module A unit #6 of 17 38 www.elegantAI.org

🗒 Notes

This just creates the button and checks to see if it is working so you
should get a message to that effect in the console. This is just temporary
until we use the button to start the training process after we have our
four sets of ten data points (target labels)

🛠 Code Explanation

 y: mouseY

 }

 let target = {

 label: targetLabel

 }

 nn.addData(inputs, target)

 fill(0, 0, 255, 100)

 circle(mouseX, mouseY, 25)

 textAlign(CENTER, CENTER)

 stroke(0)

 text(targetLabel, mouseX, mouseY)

}

function train()

{

 console.log('button working')

}

button.mousePressed(train) We activate the train() function when we
clcik the button

console.log('button working') This is where we are going to train our
neural network

AI module A unit #6 of 18 38 www.elegantAI.org

AI module A unit #6 of 19 38 www.elegantAI.org

Figure A6.7

If the button works OK then remove the console log and add the debug.
In the train() function we start training the model. Add the data points
(circles) for A, B, C and D before clicking on the train button.

❗ We need to add a comma , after the word ‘classification’.

Sketch A6.8 training

let nn

let targetLabel = 'A'

let button

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 let options = {

 task: 'classification',

 debug: 'true'

 }

 nn = ml5.neuralNetwork(options)

 background(220)

 button = createButton('train')

 button.style('font-size', '30px')

 button.mousePressed(train)

}

function keyPressed()

{

 targetLabel = key.toUpperCase()

}

function mousePressed()

{

AI module A unit #6 of 20 38 www.elegantAI.org

🗒 Notes

When we do this we get the following results which are extremely poor.
In this example it was around 6 or 7, not good at all. There is a very good
reason for this and it is all to do with the size of the data points we have
collected. The model works an the basis that all the values (including the
inputs) are small, this is called normalisation. This was deliberate to
illustrate what difference it makes and how essential it is. The neural
network only really works with values between 0 and 1 (or -1 and +1). We
have x and y values in the region of up to 400. We use the normalisation
function normalizeData()

🛠 Code Explanation

 let inputs = {

 x: mouseX,

 y: mouseY

 }

 let target = {

 label: targetLabel

 }

 nn.addData(inputs, target)

 fill(0, 0, 255, 100)

 circle(mouseX, mouseY, 25)

 textAlign(CENTER, CENTER)

 stroke(0)

 text(targetLabel, mouseX, mouseY)

}

function train()

{

 nn.train()

}

nn.train() Instead of a console log we train the
neural network instead

AI module A unit #6 of 21 38 www.elegantAI.org

AI module A unit #6 of 22 38 www.elegantAI.org

Figure A6.8

We need to improve things a little bit. Two things we are going to do, one
is to normalise the data which means putting the values between 0 and 1,
for that we use the normalizeData() function, the other thing is to
specify the number of epochs. In the example from the training
performance above there were only ten epochs, we are increasing the
number to 100. We also need a callback function: finishedTraining()

Sketch A6.9 normalisation

let nn

let targetLabel = 'A'

let button

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 let options = {

 task: 'classification',

 debug: 'true'

 }

 nn = ml5.neuralNetwork(options)

 background(220)

 button = createButton('train')

 button.style('font-size', '30px')

 button.mousePressed(train)

}

function keyPressed()

{

 targetLabel = key.toUpperCase()

}

AI module A unit #6 of 23 38 www.elegantAI.org

function mousePressed()

{

 let inputs = {

 x: mouseX,

 y: mouseY

 }

 let target = {

 label: targetLabel

 }

 nn.addData(inputs, target)

 fill(0, 0, 255, 100)

 circle(mouseX, mouseY, 25)

 textAlign(CENTER, CENTER)

 stroke(0)

 text(targetLabel, mouseX, mouseY)

}

function train()

{

 nn.normalizeData()

 let options = {

 epochs: 100

 }

 nn.train(options, finishedTraining)

}

function finishedTraining()

{

 console.log('finished training')

}

AI module A unit #6 of 24 38 www.elegantAI.org

🗒 Notes

You will get a finished training comment in the console, also the
graph will look considerably better, very close to zero.

🛠 Code Explanation

nn.normalizeData() Normalises the data between 0 and 1

epochs: 100 Go through the whole training data 100 times rather
than just the 10

AI module A unit #6 of 25 38 www.elegantAI.org

AI module A unit #6 of 26 38 www.elegantAI.org

Figure A6.9

Before we go any further I want to add a bit of colour to the proceedings.
Each letter will have a given colour:

🀄 A is blue

🀄 B is red

🀄 C is green

🀄 D is yellow

This will give a more visual prediction later

Sketch A6.10 adding a bit of colour

let nn

let targetLabel = 'A'

let button

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 let options = {

 task: 'classification',

 debug: 'true'

 }

 nn = ml5.neuralNetwork(options)

 background(220)

 button = createButton('train')

 button.style('font-size', '30px')

 button.mousePressed(train)

}

function keyPressed()

{

 targetLabel = key.toUpperCase()
AI module A unit #6 of 27 38 www.elegantAI.org

}

function mousePressed()

{

 let inputs = {

 x: mouseX,

 y: mouseY

 }

 let target = {

 label: targetLabel

 }

 nn.addData(inputs, target)

 if (targetLabel === 'A')

 {

 fill(0, 0, 255, 100)

 }

 if (targetLabel === 'B')

 {

 fill(255, 0, 0, 100)

 }

 if (targetLabel === 'C')

 {

 fill(0, 255, 0, 100)

 }

 if (targetLabel === 'D')

 {

 fill(255, 255, 0, 100)

 }

 circle(mouseX, mouseY, 25)

 textAlign(CENTER, CENTER)

 stroke(0)

 text(targetLabel, mouseX, mouseY)

}
AI module A unit #6 of 28 38 www.elegantAI.org

🗒 Notes

We have a separate colour for each cluster of data points, we just use
several if() statements. The === means it has to be exactly that string

🛠 Code Explanation

function train()

{

 nn.normalizeData()

 let options = {

 epochs: 100

 }

 nn.train(options, finishedTraining)

}

function finishedTraining()

{

 console.log('finished training')

}

if (targetLabel === 'A') If the label is A then use the following
colour fill

AI module A unit #6 of 29 38 www.elegantAI.org

AI module A unit #6 of 30 38 www.elegantAI.org

Figure A6.10

We create a simple variable expression called state, it helps us keep
track of where we are in the process, we will have three states. The first
state is to collect the data (collection), we then train the model on
that data (training) and finally we predict what happens when we click
somewhere on the canvas (predicting). In mousePressed() we move a
whole block of code inside an if() statement.

Sketch A6.11 a state of mind

let nn

let targetLabel = 'A'

let button

let state = 'collection'

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 let options = {

 task: 'classification',

 debug: 'true'

 }

 nn = ml5.neuralNetwork(options)

 background(220)

 button = createButton('train')

 button.style('font-size', '30px')

 button.mousePressed(train)

}

function keyPressed()

{

 targetLabel = key.toUpperCase()

}

AI module A unit #6 of 31 38 www.elegantAI.org

function mousePressed()

{

 let inputs = {

 x: mouseX,

 y: mouseY

 }

 if (state == 'collection')

 {

 let target = {

 label: targetLabel

 }

 nn.addData(inputs, target)

 if (targetLabel === 'A')

 {

 fill(0, 0, 255, 100)

 }

 if (targetLabel === 'B')

 {

 fill(255, 0, 0, 100)

 }

 if (targetLabel === 'C')

 {

 fill(0, 255, 0, 100)

 }

 if (targetLabel === 'D')

 {

 fill(255, 255, 0, 100)

 }

 stroke(0)

 circle(mouseX, mouseY, 25)

 textAlign(CENTER, CENTER)

 stroke(0)
AI module A unit #6 of 32 38 www.elegantAI.org

🗒 Notes

A bit of refactoring not really adding lots of new code. The change of the
state is something like changing the mode setting on a piece of equipment.

🛠 Code Explanation

 text(targetLabel, mouseX, mouseY)

 }

}

function train()

{

 state = 'training'

 nn.normalizeData()

 let options = {

 epochs: 100

 }

 nn.train(options, finishedTraining)

}

function finishedTraining()

{

 console.log('finished training')

 state = 'prediction'

}

let state = 'collection' Define and initialise variable string to collection

state = 'training' Change the string to training

state = 'prediction' Change again to prediction

AI module A unit #6 of 33 38 www.elegantAI.org

The final stage is the prediction or classification. We want to predict what
every pixel of the canvas would be if you were to create a new data point.
We create a new callback function called gotResults() but only after
we have run the classifier.

When you have trained the model click on the canvas (anywhere) and as
you move the mouse around you will start colouring in the predicted colour
for that particular coordinate on the canvas. We are filling the circle with
the predicted colour at that coordinate on the canvas.

Sketch A6.12 classifying

let nn

let targetLabel = 'A'

let button

let state = 'collection'

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 let options = {

 task: 'classification',

 debug: 'true'

 }

 nn = ml5.neuralNetwork(options)

 background(220)

 button = createButton('train')

 button.style('font-size', '30px')

 button.mousePressed(train)

}

function keyPressed()

{

AI module A unit #6 of 34 38 www.elegantAI.org

 targetLabel = key.toUpperCase()

}

function mousePressed()

{

 let inputs = {

 x: mouseX,

 y: mouseY

 }

 if (state == 'collection')

 {

 let target = {

 label: targetLabel

 }

 nn.addData(inputs, target)

 if (targetLabel === 'A')

 {

 fill(0, 0, 255, 100)

 }

 if (targetLabel === 'B')

 {

 fill(255, 0, 0, 100)

 }

 if (targetLabel === 'C')

 {

 fill(0, 255, 0, 100)

 }

 if (targetLabel === 'D')

 {

 fill(255, 255, 0, 100)

 }

 stroke(0)

 circle(mouseX, mouseY, 25)
AI module A unit #6 of 35 38 www.elegantAI.org

 textAlign(CENTER, CENTER)

 stroke(0)

 text(targetLabel, mouseX, mouseY)

 }

 else if (state == 'prediction')

 {

 nn.classify(inputs, gotResults)

 }

}

function train()

{

 state = 'training'

 nn.normalizeData()

 let options = {

 epochs: 100

 }

 nn.train(options, finishedTraining)

}

function finishedTraining()

{

 console.log('finished training')

 state = 'prediction'

}

function gotResults(results)

{

 mousePressed()

 if (results[0].label === 'A')

 {

 fill(0, 0, 255, 100)

 }
AI module A unit #6 of 36 38 www.elegantAI.org

🗒 Notes

Each coordinate will have a predicted colour value depending on where
that particular pixel point is. The results will classify it and draw the
corresponding coloured circle. Think of it as filling in all the blanks where
you had no data, it has interpreted the rest of the canvas for you.

🌻 Challenge

Try different shapes of data points e.g a swirl, concentric circles (you may
need a lot more data points). Also try drawing pixels instead of circles
(although it might take longer to fill the canvas).

🛠 Code Explanation

 if (results[0].label === 'B')

 {

 fill(255, 0, 0, 100)

 }

 if (results[0].label === 'C')

 {

 fill(0, 255, 0, 100)

 }

 if (results[0].label === 'D')

 {

 fill(255, 255, 0, 100)

 }

 noStroke()

 circle(mouseX, mouseY, 25)

}

nn.classify(inputs, gotResults)
The classify() function takes the inputs
and returns the results whether it is A, B,
C or D

if (results[0].label === 'A')
It makes the prediction for that x, y
value input and checks to see whether it
is A, B, C or D and colours appropriately

AI module A unit #6 of 37 38 www.elegantAI.org

AI module A unit #6 of 38 38 www.elegantAI.org

Figure A6.12

