
Creative
Coding

Module A

Unit #2

your first
circle

Module A Unit #2 first circle

Sketch A2.1 your first sketch

Sketch A2.2 a circle

Sketch A2.3 adding another circle

Sketch A2.4 making a simple pattern

Sketch A2.5 adding some colour

Sketch A2.6 different colours

Sketch A2.7 new sketch

Introduction to variables

Sketch A2.8 adding some variables

Introduction to Random

Symbols we use

Arithmetic Operators

Comparison Operators

Logical Operators

Assignment Operators

Maths Functions

Sketch A2.9 drawing random circles

Sketch A2.10 while() loop circles

Sketch A2.11 a few more adjustments

Introducing the for() loop

Sketch A2.12 using for() loops

Contents

CC module A unit #2 of 2 41 www.elegantAI.org

http://www.elegantAI.org

This may not seem very challenging, but using the circle() function
means I can introduce you to many coding concepts that you will use in
your journey into creative coding.

Key concepts covered in this unit:

🀄 drawing a circle

🀄 names of colours

🀄 variables

🀄 random

🀄 operators

🀄 while() loop

🀄 for() loop

Introduction to your first circle

CC module A unit #2 of 3 41 www.elegantAI.org

http://www.elegantAI.org

First of all, you need to delete the default code and type the following. It
is really just the same, but I want to arrange it in a more intuitive way.
The semi-colons aren’t essential, and the first curly bracket {} doesn’t
have to start on that line (although it is common to do so).

🗒 Notes

Your screen should look something like the image below.

🌻 Challenge

Change the size of the canvas from createCanvas(400, 400) to
createCanvas(600, 200)

🛠 Code Explanation

Sketch A2.1 your first sketch

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background('lightgrey')

}

function setup() Everything in the first function only happens once

{ } All the code goes inside the curly brackets (or
braces)

createCanvas(400, 400)
We are creating a canvas just like an artist ready
to paint. This canvas is 400 pixels wide by 400
pixels high.

function draw() This function operates a continuous loop

background('lightgrey') We give the background a colour. In this instance it
is a light grey colour (more on colours later)

CC module A unit #2 of 4 41 www.elegantAI.org

http://www.elegantAI.org

CC module A unit #2 of 5 41 www.elegantAI.org

Figure A2.1

http://www.elegantAI.org

When we add or change a line (or lines) of code, they will be highlighted
blue. We are going to add your first shape, a circle.

🗒 Notes

Because the background and circle are in the draw() function, the
programme code is drawing them continuously. First, the background, and
then the circle.

🌻 Challenges

1. Change the co-ordinates from: circle(200, 200, 100) to

circle(100, 300, 100)

2. Change the circle diameter from: circle(100, 300, 100) to

circle(100, 300, 50)

🛠 Code Explanation

Sketch A2.2 a circle

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background('lightgrey')

 circle(200, 200, 100)

}

circle(200, 200, 100)
The centre of the circle is at position 200 pixels from
the left hand edge of the canvas and 200 pixels from
the top of the canvas. The diameter is 100 pixels.

CC module A unit #2 of 6 41 www.elegantAI.org

http://www.elegantAI.org

CC module A unit #2 of 7 41 www.elegantAI.org

Figure A2.2

http://www.elegantAI.org

We can add more circles (and other shapes)

🗒 Notes

Notice that the second circle overlaps on top of the first circle. The
programme works from top to bottom, one line of code at a time. In this
instance, it draws the background first, then the first circle, then the
second circle, and then repeats.

Sketch A2.3 adding another circle

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background('lightgrey')

 circle(200, 200, 100)

 circle(250, 250, 100)

}

CC module A unit #2 of 8 41 www.elegantAI.org

http://www.elegantAI.org

CC module A unit #2 of 9 41 www.elegantAI.org

Figure A2.3

http://www.elegantAI.org

We will change the position of the second circle and add three more
circles.

🗒 Notes

You might notice in the image below that next to Auto-refresh, the box
is ticked and is highlighted in red. This is useful (as well as dangerous) so
that you don’t have to keep pressing the run (play) button. It can be
dangerous if you are using for() loops (more on that later) where you
can accidentally get into an infinite loop and crash the programme.

Sketch A2.4 making a simple pattern

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background('lightgrey')

 circle(200, 200, 100)

 circle(275, 275, 100)

 circle(125, 275, 100)

 circle(125, 125, 100)

 circle(275, 125, 100)

}

CC module A unit #2 of 10 41 www.elegantAI.org

http://www.elegantAI.org

CC module A unit #2 of 11 41 www.elegantAI.org

Figure A2.4

http://www.elegantAI.org

Before we move onto other shapes and key concepts, we can explore colour.
To start with, we can use the names of colours such as red, green,
blue, or orange, for example (there are more but a limited number). To
do this, we use the fill() function. First off, let’s colour them red.

🗒 Notes

You will notice that in the code, you get a little red box. This just
illustrates the colour that you are requesting. There are 140 named
colours. You can see them all at:

https://www.w3schools.com/colors/colors_names.asp or just
search for JavaScript colour names

🌻 Challenge

Try other names of colours

Sketch A2.5 adding some colour

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background('lightgrey')

 fill('red')

 circle(200, 200, 100)

 circle(275, 275, 100)

 circle(125, 275, 100)

 circle(125, 125, 100)

 circle(275, 125, 100)

}

CC module A unit #2 of 12 41 www.elegantAI.org

https://www.w3schools.com/colors/colors_names.asp
http://www.elegantAI.org

🛠 Code Explanation

fill('red')
This is the function to fill any shape any colour you chose. If you
use the name of a colour then you have to put it in speech marks
(single or double)

CC module A unit #2 of 13 41 www.elegantAI.org

http://www.elegantAI.org

CC module A unit #2 of 14 41 www.elegantAI.org

Figure A2.5

http://www.elegantAI.org

We will give each one a different colour.

🗒 Notes

To get each separate colour to fill the next circle, we have to put the
fill() function in between the circles. The code runs in a linear fashion;
it goes step by step, one line at a time, starting at the top and then works
its way down till it reaches the bottom. Then, with the draw() function, it
goes to the top and starts all over again.

🌻 Challenge

Try other colours and see which colours work and which don’t

Sketch A2.6 different colours

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background('lightgrey')

 fill('red')

 circle(200, 200, 100)

 fill('green')

 circle(275, 275, 100)

 fill('blue')

 circle(125, 275, 100)

 fill('yellow')

 circle(125, 125, 100)

 fill('purple')

 circle(275, 125, 100)

}

CC module A unit #2 of 15 41 www.elegantAI.org

http://www.elegantAI.org

CC module A unit #2 of 16 41 www.elegantAI.org

Figure A2.6

http://www.elegantAI.org

❗ Start a brand new sketch.

Writing the code for five circles is not too arduous, but what if you want
to draw a hundred or a thousand circles? We are going to need a bit of
help. Programming is all about efficiency, and this usually means writing
code in the fewest lines as possible. Delete the previous code and write
this.

❗ Notice that the background() goes into the setup() function.

🗒 Notes

We have drawn a small (20-pixel diameter) circle in the centre of the
canvas, but before we move onto the next sketch, I need to introduce an
important concept: variables.

Sketch A2.7 new sketch

function setup()

{

 createCanvas(400, 400)

 background('lightgrey')

}

function draw()

{

 circle(200, 200, 20)

}

CC module A unit #2 of 17 41 www.elegantAI.org

http://www.elegantAI.org

CC module A unit #2 of 18 41 www.elegantAI.org

Figure A2.7

http://www.elegantAI.org

Variables are very useful for storing data that we may want to access or
change later. Variables can be named with a single letter or a name. They
can have numbers in them but must never start with a number. Usually,
the name of the variables has some relevant meaning.

For instance, if you want to have a variable for speed, you would be best
to use the word speed rather than just s because later on in a long list
of code, you may forget what s represents. This is especially the case if
you have a lot of variables. At the same time, don’t make them too long;
otherwise, the code will look very messy and difficult to read by anyone
else but you.

In this next example, we are going to give the coordinates for the circle
names x and y. So that we can alter them in a later sketch. Variables are
very powerful and extremely useful.

To use a variable like x and y, then we need to define them. We use the
key word let. You can just define it or initialise it, for example:

Now in the sketch below we are going to create a variable for the x-
coordinate (which is 200) and the y co-ordinate (which is 300) of the
circle by calling them let x and let y.

One other important detail, scope. It is always a good idea to declare
variables at the beginning of a sketch, that way they are available
everywhere. If you only declare them between two curly brackets they
only live between those curly brackets and nowhere else. You will see that
I do both so it is usually OK but something to bear in mind when
generating many functions and lines of code.

Mostly we will be using numeric values (integers and floats) but just
occasionally we will be using strings (words or letters).

Introduction to variables

let x this defines x as a variable

let x = 10 this gives x an initial value of 10

CC module A unit #2 of 19 41 www.elegantAI.org

http://www.elegantAI.org

We have replaced the x value and y value with variables of that name.
This draws the same small circle in the centre of the canvas.

🗒 Notes

This demonstrates how using variables can be very useful, especially when
there are many shapes and lots of movement. If you are familiar with data
types let is a float (also called real) by default. The line of code
circle(x, y, 20) is just the same as circle(200, 200, 20).

🌻 Challenges

1. Use different initialised values for the x and y variable

2. Create another variable for the diameter

🛠 Code Explanation

Sketch A2.8 adding some variables

let x = 200

let y = 200

function setup()

{

 createCanvas(400, 400)

 background('lightgrey')

}

function draw()

{

 circle(x, y, 20)

}

let x = 200 Declares the variable x and initialises it to a value of 200

let y = 200 Declares the variable y and initialises it to a value of 200

circle(x, y, 20) The circle is drawn at the initialised x and y values (200, 200)

CC module A unit #2 of 20 41 www.elegantAI.org

http://www.elegantAI.org

CC module A unit #2 of 21 41 www.elegantAI.org

Figure A2.8

http://www.elegantAI.org

Now we will be making shapes move and introduce random. Different
functions as loops will be explored. This is where we can create a random
number. It is not really random but for most purposes it is random enough.
We use the function random() and it works like this…

Before we go any further we need to look at notations used with coding
which are also used in maths. Just read quickly through the next section
to get a feel for the notations and what they mean. As you use them they
will make more sense, I include them here and now so that you have a
reference.

Introduction to Random

random(20) will give you a number between 0 and 19 (but not 20)

random(12, 37) would give you a value between 12 and 37 (but not 37)

CC module A unit #2 of 22 41 www.elegantAI.org

http://www.elegantAI.org

In coding (as well as in maths), we use notation, symbols rather than
words. Most of the maths used in coding is fairly basic; some symbols,
however, may be unfamiliar. We are going to quickly cover the following:

🀄 Arithmetic Operators

These perform basic mathematical operations; they are essential for
numerical computations.

🀄 Comparison Operators

These compare values and return a boolean result (true or false).

🀄 Logical Operators

These combine boolean values to produce a single boolean result.

🀄 Assignment Operators

These are used to assign values to variables.

🀄 Maths Functions

Built-in functions that perform more complex mathematical operations.

❗ Please just skim read through these; they are for reference and you
don’t need to learn them just yet. I include them now without any context
so that you are aware of them. You may find them a useful reference later
on.

Symbols we use

CC module A unit #2 of 23 41 www.elegantAI.org

http://www.elegantAI.org

Simple mathematical operators you will use frequently. They are used
throughout all coding and should be quite familiar except for, perhaps,
modulus.

Arithmetic Operators

+ Addition (2 + 4) will give you 6

- Subtraction (6 - 3) will give you 3

/ Division (8 / 2) will give you 4

* Multiplication (3 * 5) will give you 15

% Modulus gives you the remainder (10 % 8) will give you 2

= Equals (not equals to) 2 + 4 = 6

CC module A unit #2 of 24 41 www.elegantAI.org

http://www.elegantAI.org

In short, these are conditional statements where a condition needs to be
met. These are often used with while() loops

Comparison Operators

== means equal to (5 == 5) is TRUE, (6 == 5) is FALSE

< means less than (6 < 8) is TRUE, (8 < 6) is FALSE,

<= means less than or equal to (6 <= 8) is TRUE, (6 <= 6) is also TRUE

> means greater than (8 > 6) is TRUE, (6 > 8) is FALSE,

>= means greater than or equal to (8 >= 6) is TRUE, (6 >= 6) is also TRUE

!= means not equal to (6 != 5) is TRUE (5 != 5) is FALSE

CC module A unit #2 of 25 41 www.elegantAI.org

http://www.elegantAI.org

These are used with if() statements. The if() statement can be similar
to the while() loop; if something is true or a condition is met, then do
something, for example: if(x < 100 && y > 50) means if x is less
than 100 AND y is greater than 50.

Logical Operators

&& means AND (x < 100 && y > 50)

|| means OR (x < 100 || y y > 50)

! Means NOT (x < 100 ! y y > 50)

CC module A unit #2 of 26 41 www.elegantAI.org

http://www.elegantAI.org

They are used often in coding (some much more than others). It is more
obvious when you see them in a meaningful context, which often goes for
all coding.

Assignment Operators

++ means increasing by 1 (x++) x is incremented by 1 each time

—- mean reducing or subtracting by 1 (y—) y is decremented by 1 each time

+= means addition (x += 10) or (x += y) same as x = x + y

-= means subtracting (x -= 10) or (x -= y) same as x = x - y

*= means multiplying (x *= 10) or (x *= y) same as x = x * 10

/= means division (x /= 2) or (x /= y) same as x = x / 10

CC module A unit #2 of 27 41 www.elegantAI.org

http://www.elegantAI.org

When using the mathematical notation, these can be very useful. Here are
just a few

Maths Functions

floor() Calculates the closest integer value that is less than or equal to the
value of a number

abs()

Calculates the absolute value of a number. A number's absolute value is
its distance from zero on the number line. -5 and 5 are both five units
away from zero, so calling abs(-5) and abs(5) both return 5. The absolute
value of a number is always positive.

round()

Calculates the integer closest to a number. For example, round(133.8)
returns the value 134. The second parameter, decimals, is optional. It sets
the number of decimal places to use when rounding. For example,
round(12.34, 1) returns 12.3. It is zero by default.

sq()

Calculates the square of a number. Squaring a number means multiplying
the number by itself. For example, sq(3) evaluates 3 x 3 which is 9. The
sq(-3) evaluates -3 x -3 which is also 9. Multiplying two negative
numbers produces a positive number. The value returned by sq() is always
positive.

squrt()

Calculates the square root of a number. A number's square root can be
multiplied by itself to produce the original number. For example, sqrt(9)
returns 3 because 3 x 3 = 9. The sqrt() always returns a positive value.
sqrt() doesn't work with negative arguments such as sqrt(-9).

pow Calculates exponential expressions such as 23. For example, pow(2, 3)
evaluates the expression 2 x 2 x 2. pow(2, -3) evaluates 1 ÷ (2 x 2 x 2).

ceil()
Calculates the closest integer value that is greater than or equal to a
number. For example, calling ceil(9.03) and ceil(9.97) both return the
value 10.

exp() Calculates the value of Euler's number e (2.71828...) raised to the power
of a number.

CC module A unit #2 of 28 41 www.elegantAI.org

http://www.elegantAI.org

In this sketch, you will draw circles in random positions on the canvas. The
function draw() is a continuous loop and will draw them forever. You don’t
need to give x and y an initial value, but it is good practice to do so.

🗒 Notes

A reminder that in computer code it starts counting from 0, not 1, and so it
stops when it gets to the 400th number, which is 399. Just something to
remember.

🌻 Challenge

Create a random diameter as well.

🛠 Code Explanation

Sketch A2.9 drawing random circles

let x = 200

let y = 200

function setup()

{

 createCanvas(400, 400)

 background('lightgrey')

}

function draw()

{

 x = random(400)

 y = random(400)

 circle(x, y, 20)

}

x = random(400) Choses a random number from 0 to 399 for the x value

y = random(400) Choses a random number from 0 to 399 for the x value

CC module A unit #2 of 29 41 www.elegantAI.org

http://www.elegantAI.org

CC module A unit #2 of 30 41 www.elegantAI.org

Figure A2.9

http://www.elegantAI.org

❗ delete what is in the draw() function, notice we have a loop within
draw and so things are double indented.

What we want to do is draw 100 circles and then stop. The while() loop
keeps checking the number of circles it has drawn. If the number is less
than (<) 100, it keeps going while it is true. Once it has drawn 100 and
the next one is therefore more than 100, it then stops because it returns
false. To keep track of the number of circles, we add a new variable
called count.

❗ Make sure that Auto-refresh is OFF, otherwise the programme will
likely crash as you type it in. It is the tick box near the top.

Sketch A2.10 while() loop circles

let x = 200

let y = 200

let count = 0

function setup()

{

 createCanvas(400, 400)

 background('lightgrey')

}

function draw()

{

 while (count < 100)

 {

 x = random(400)

 y = random(400)

 circle(x, y, 20)

 count = count + 1

 }

}

CC module A unit #2 of 31 41 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

This sketch draws exactly 100 small circles in random positions every time
you press the run button. It makes good use of the while() loop
function. Also uses the comparison < less than.

🛠 Code Explanation

while (count < 100) This is a while() loop which checks to see if count has
reached 100

count = count + 1 We add 1 each time to the count varaible

CC module A unit #2 of 32 41 www.elegantAI.org

http://www.elegantAI.org

CC module A unit #2 of 33 41 www.elegantAI.org

Figure A2.10

http://www.elegantAI.org

We can use the random() function to create a border and introduce a
very common shorthand for adding each time 1 (++). So, count = count
+ 1 becomes: count++.

🗒 Notes

We have now limited the random range to between 100 and 300; this
gives us a nice empty border around the canvas.

🌻 Challenge

Try different values for random.

Sketch A2.11 a few more adjustments

let x = 200

let y = 200

let count = 0

function setup()

{

 createCanvas(400, 400)

 background('lightgrey')

}

function draw()

{

 while (count < 100)

 {

 x = random(100, 300)

 y = random(100, 300)

 circle(x, y, 20)

 count++

 }

}

CC module A unit #2 of 34 41 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

x = random(100, 300) Random number between 100 and 300

y = random(100, 300) Random number between 100 and 300

count++ Shorthand version, adds 1 each time, the
same as count = count + 1

CC module A unit #2 of 35 41 www.elegantAI.org

http://www.elegantAI.org

CC module A unit #2 of 36 41 www.elegantAI.org

Figure A2.11

http://www.elegantAI.org

You have already come across the while() loop. There is another called
the if() statement (coming soon) which is similar to the while() loop.
There is a third and it is arguably the most important or the most used. It
is a little bit more complicated, but as we will be using it a lot, you will get
used to it and it does become very intuitive (trust me).

Our example is as follows:

for (let i = 0; i < 100; i++)

Inside the for() loop, brackets are three parts separated by semicolons
(;), they are:

1⃣ let i = 0

2⃣ i < 100

3⃣ i++

Firstly, 1⃣ we create a variable called i. This is just convention; you can
call it anything you like, and we give it an initial value of 0.

Secondly, 2⃣ we put a condition on this variable, in this case, less than
100 (<). The for() loop is true while i is less than 100.

Thirdly, 3⃣ we increment the loop, in this instance, we simply add 1 to i
for each loop (i++) until i has the value of 100 and stops.

Introducing the for() loop

CC module A unit #2 of 37 41 www.elegantAI.org

http://www.elegantAI.org

Another way to draw 100 circles is to use a for() loop. It loops through
as a sort of counter from 0 to 100 in steps of 1. We are still going to use
i as the counter, but we initialise it inside the for() loop itself. The
noLoop() function stops the draw() function but only after it has drawn
100 circles.

❗ Remove: all reference to the count variable, I recommend starting a
new sketch, it helps memory muscle.

Sketch A2.12 using for() loops

let x = 200

let y = 200

function setup()

{

 createCanvas(400, 400)

 background('lightgrey')

}

function draw()

{

 for (let i = 0; i < 100; i++)

 {

 x = random(100, 300)

 y = random(100, 300)

 circle(x, y, 20)

 }

 noLoop()

}

CC module A unit #2 of 38 41 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Draws 100 circles in random positions once between 100 and 300 using the
for() loop. For (let i = 0; i < 100; i++) draws 100 circles in
random positions once between 100 and 300 using the for() loop. There
are three parts to it:

Part 1: let i = 0;

Part 2: i < 100;

Part 3: i++

Persevere with the for() loop as it will appear a lot in the future. Notice
we have the semicolons separating the three parts.

🌻 Challenges

1. Change the number from 100 to either 10 or 1000.

2. Take out the noLoop() function.

🛠 Code Explanation

for()
This is the for() loop, it will count to 10 and stop (actually will
then start counting again. The draw function is a loop so it is
a loop within a loop

let i = 0 This declares a variable called i and initialises it to 0

i < 100 This bit checks to see if i is still less than 100

i++ This adds 1 to the i variable every time it does a loop

noLoop() Stops the draw() loop once the condition has been met

CC module A unit #2 of 39 41 www.elegantAI.org

http://www.elegantAI.org

CC module A unit #2 of 40 41 www.elegantAI.org

Figure A2.12

http://www.elegantAI.org

Don’t worry if you didn’t get all of that in the first go; we will use many of
the key concepts you just experienced repeatedly. All I have done is simply
introduced them to you. The next unit (#3) is all about colour using
something called RGB, which just stands for Red, Blue, and Green.

Next. . .

CC module A unit #2 of 41 41 www.elegantAI.org

http://www.elegantAI.org

