
Creative
Coding

Module B

Unit #8

irregular
shapes

Module B Unit #8 Vertex and Bézier

Sketch B8.1 drawing a vertex line

Sketch B8.2 drawing a square using vertex

Sketch B8.3 that was CLOSE

Sketch B8.4 making a more irregular shape

Sketch B8.5 translating

Sketch B8.6 rotating

Sketch B8.7 many sided shape

Sketch B8.8 a vertex doodle

Sketch B8.9 a Bézier curve

Sketch B8.10 the dancing mouse

Sketch B8.11 bezier doodle part 1

Sketch B8.12 bezier doodle part 2

Sketch B8.13 another doodle with bezier

Sketch B8.14 lovely jubbly

Sketch B8.15 a bit of a splash

Content

CC module B unit #8 of 2 41 www.elegantAI.org

It is one thing to draw regular shapes using the functions circle, square,
rectangle and triangle, etc., but what if you want to draw something that
isn’t a regular shape? Then you can use the vertex() function to draw
any shape. This is great for drawing random patterns or shapes and
manipulating them. The bezier() function allows us to draw curves.

We start with beginShape() and add vertex co-ordinates for x and y,
and then add endShape() at the end.

There are many types; here are two:

🀄 vertex()

🀄 bezier()

Introduction to irregular shapes

CC module B unit #8 of 3 41 www.elegantAI.org

A vertex is a point in space; here we are using it in 2D, but you can also
do this in 3D (next module). It needs the x and y coordinates. You can have
as many vertices as you would like. To draw the lines between the vertices,
you need to use the functions (commands) beginShape() and
endShape().

Vertex lines

CC module B unit #8 of 4 41 www.elegantAI.org

We are going to start very simply by drawing a line. We specify the end
coordinates of the line, and it draws a line between them; there is no line
function. Although this seems a little protracted, it has great value when
you use the coordinates in creative ways, drawing complex shapes and
patterns.

🗒 Notes

Using the vertex() function is a useful tool to draw irregular polygons,
in other words, shapes other than rectangles and triangles. A vertex simply
draws a dot (pixel) at the co-ordinate given. The beginShape() and
endShape() join the dots up. In this example, to get you started, two
dots are used so it gives you one line.

🌻 Challenge

Try it without the beginShape() and endShape().

Sketch B8.1 drawing a vertex line

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 beginShape()

 vertex(100, 100)

 vertex(300, 300)

 endShape()

}

CC module B unit #8 of 5 41 www.elegantAI.org

🛠 Code Explanation

beginShape() Starts adding vertices to an irregular shape

vertex(100, 100) Defines a vertex with x and y coordinates

endShape() Stops adding vertices to an irregular shape

CC module B unit #8 of 6 41 www.elegantAI.org

CC module B unit #8 of 7 41 www.elegantAI.org

Figure B8.1

Drawing a simple square using the vertex coordinates, the order is critical.
It draws a line from one vertex to the next one, in order, on the list. So
don’t get them mixed up. Notice that we have five vertices, whereas a
square should have only four; do you know why?

🗒 Notes

Now to draw a square using more dots and therefore more lines. For this to
work, you need to close the shape by drawing the last dot where the first
one was drawn. In the next example, there is a shortcut to this. Notice
that it fills the shape automatically.

🌻 Challenges

1. Reorder the vertices and see what happens.

2. Try to draw a couple of rectangles.

Sketch B8.2 drawing a square using vertex

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 beginShape()

 vertex(100, 100)

 vertex(300, 100)

 vertex(300, 300)

 vertex(100, 300)

 vertex(100, 100)

 endShape()

}

CC module B unit #8 of 8 41 www.elegantAI.org

CC module B unit #8 of 9 41 www.elegantAI.org

Figure B8.2

❗ remove the last vertex point

This joins up the first and last vertices automatically. We can remove the
last vertex so that we only have four and add the CLOSE command.
Although we have four vertices for the square, it doesn’t draw the final
line until you add the word CLOSE to the endShape().

🗒 Notes

Using endShape(CLOSE) means you don’t have to draw the last dot to
join it all up. Notice it is in capital letters.

🌻 Challenge

Try the above without the CLOSE argument and see the difference.

🛠 Code Explanation

Sketch B8.3 that was CLOSE

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 beginShape()

 vertex(100, 100)

 vertex(300, 100)

 vertex(300, 300)

 vertex(100, 300)

 endShape(CLOSE)

}

endShape(CLOSE) Draws the final line between the first and last vertices

CC module B unit #8 of 10 41 www.elegantAI.org

CC module B unit #8 of 11 41 www.elegantAI.org

Figure B8.3

Adding in a couple of vertices.

🗒 Notes

A slightly more interesting shape.

🌻 Challenge

Make your own shape, a star perhaps!

Sketch B8.4 making a more irregular shape

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 beginShape()

 vertex(100, 100)

 vertex(300, 100)

 vertex(200, 150)

 vertex(300, 300)

 vertex(100, 300)

 vertex(200, 250)

 endShape(CLOSE)

}

CC module B unit #8 of 12 41 www.elegantAI.org

CC module B unit #8 of 13 41 www.elegantAI.org

Figure B8.4

We will now translate to the centre of the canvas. There is going to
require some reorganising of the coordinates, as you might expect. Have a
go yourself first and see if you can do it. Using pen and paper can help to
work out the new coordinates.

🗒 Notes

You can just subtract 200.

Sketch B8.5 translating

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 translate(width/2, height/2)

 beginShape()

 vertex(-100, -100)

 vertex(100, -100)

 vertex(0, -50)

 vertex(100, 100)

 vertex(-100, 100)

 vertex(0, 50)

 endShape(CLOSE)

}

CC module B unit #8 of 14 41 www.elegantAI.org

CC module B unit #8 of 15 41 www.elegantAI.org

Figure B8.5

We can now rotate the shape.

🗒 Notes

It rotates about the centre of the canvas; also, we are using radians for
the angle.

🌻 Challenge

Change to degrees.

Sketch B8.6 rotating

let angle = 0

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 translate(width/2, height/2)

 rotate(angle)

 beginShape()

 vertex(-100, -100)

 vertex(100, -100)

 vertex(0, -50)

 vertex(100, 100)

 vertex(-100, 100)

 vertex(0, 50)

 endShape(CLOSE)

 angle += 0.05

}

CC module B unit #8 of 16 41 www.elegantAI.org

CC module B unit #8 of 17 41 www.elegantAI.org

Figure B8.6

❗ starting a new sketch

Using a for() loop and the x and y coordinates for a circle, we can draw
any-sided shape we want. Here, we are drawing a 10-sided shape.

Sketch B8.7 many sided shape

let radius = 150

let sides = 10

let x = 0

let y = 0

function setup()

{

 createCanvas(400, 400)

 angleMode(DEGREES)

}

function draw()

{

 background(220)

 translate(width/2, height/2)

 beginShape()

 for (let angle = 0; angle < 360; angle += 360/sides)

 {

 x = radius * sin(angle)

 y = radius * cos(angle)

 vertex(x, y)

 }

 endShape(CLOSE)

}

CC module B unit #8 of 18 41 www.elegantAI.org

🗒 Notes

We specify the number of sides and divide 360 by the number of sides we
want.

🌻 Challenges

1. Try other numbers of sides.

2. What happens if you put in 4.5 rather than a whole number?

3. Have a slider to change the number of sides.

CC module B unit #8 of 19 41 www.elegantAI.org

CC module B unit #8 of 20 41 www.elegantAI.org

Figure B8.7

❗ new sketch

A bit of a doodle.

Sketch B8.8 a vertex doodle

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(255)

 beginShape()

 for (let y = 50; y < 350; y += 5)

 {

 strokeWeight(random(3))

 for (let i = 50; i < 355; i += 5)

 {

 vertex(i, y)

 y = y + random(-2, 2)

 stroke(random(150, 250), 100)

 fill(random(50), 10)

 endShape()

 }

 beginShape()

 }

 noLoop()

 noFill()

 stroke(0)

 strokeWeight(2)

 rect(0, 0, width, height)

CC module B unit #8 of 21 41 www.elegantAI.org

🗒 Notes

Creating a gap all the way round and a rectangle for the border finishes it
off nicely.

🌻 Challenges

1. Play with the values, try colours; HSB might be nice.

2. Animated seascape?

}

CC module B unit #8 of 22 41 www.elegantAI.org

CC module B unit #8 of 23 41 www.elegantAI.org

Figure B8.8

Not only can we draw straight lines with a vertex() function, but we can
also do curved lines with bezier. The bezier() function has four
arguments. The first and last are the fixed end points, think line(). The
middle two affect the line by drawing it towards those points. They don’t
join the line but pull it.

There is maths behind all of this, but at this stage, it is not necessary to
understand it, just use it. If you want to know more, just search for it.

Bezier curves

CC module B unit #8 of 24 41 www.elegantAI.org

We fix four points that serve as the arguments for the bezier() curve
function.

Sketch B8.9 a Bézier curve

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 noFill()

 strokeWeight(3)

 stroke('blue')

 let x1 = 50

 let y1 = 50

 let x2 = 50

 let y2 = 350

 let x3 = 350

 let y3 = 350

 let x4 = 350

 let y4 = 50

 bezier(x1, y1, x2, y2, x3, y3, x4, y4)

 strokeWeight(10)

 stroke('darkred')

 point(x1, y1)

 point(x2, y2)

 point(x3, y3)

 point(x4, y4)

}

CC module B unit #8 of 25 41 www.elegantAI.org

🗒 Notes

The first and last are fixed, and the middle two cause the line to curve. I
have coloured the points and the line so that you can see their positions
and influence.

🌻 Challenge

Try different positions for the middle two points.

🛠 Code Explanation

bezier(x1, y1, x2, y2, x3, y3, x4, y4) The bezier() curve function with

the four sets of vertices.

CC module B unit #8 of 26 41 www.elegantAI.org

CC module B unit #8 of 27 41 www.elegantAI.org

Figure B8.9

As you move your mouse, it affects the curve of the line.

Sketch B8.10 the dancing mouse

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 noFill()

 strokeWeight(3)

 stroke('blue')

 let x1 = 50

 let y1 = 50

 let x2 = 50

 let y2 = 350

 let x3 = mouseX

 let y3 = mouseY

 let x4 = 350

 let y4 = 350

 bezier(x1, y1, x2, y2, x3, y3, x4, y4)

 strokeWeight(10)

 stroke('darkred')

 point(x1, y1)

 point(x2, y2)

 point(x3, y3)

 point(x4, y4)

}

CC module B unit #8 of 28 41 www.elegantAI.org

🗒 Notes

Gives you a sense of how one of the middle points may affect the curve.

🌻 Challenges

1. They’ll see the other points and the difference.

2. Have both the middle points be controlled by the mouse.

CC module B unit #8 of 29 41 www.elegantAI.org

CC module B unit #8 of 30 41 www.elegantAI.org

Figure B8.10

❗ new sketch

We are going to create a simple pattern.

🗒 Notes

We will code the coordinates straight into the function.

🌻 Challenge

Remove the noFill().

Sketch B8.11 bezier doodle part 1

function setup()

{

 createCanvas(400, 400)

 noFill()

}

function draw()

{

 background(220)

 bezier(50, 50, 50, 600, 600, 50, 50, 50)

}

CC module B unit #8 of 31 41 www.elegantAI.org

CC module B unit #8 of 32 41 www.elegantAI.org

Figure B8.11

We create a for() loop that increments in steps of 10; this is added to
the bezier() function, which is inside the loop.

🗒 Notes

Creates a repeated pattern; the noLoop() isn’t entirely necessary.

🌻 Challenge

Try something else.

Sketch B8.12 bezier doodle part 2

function setup()

{

 createCanvas(400, 400)

 noFill()

}

function draw()

{

 background(220)

 for(let i = 0; i < 100; i += 10)

 {

 bezier(50 + i, 50 + i, 50 + i, 600 + i, 600 + i, 50 + i, 50 +
i, 50 + i)

 }

 noLoop()

}

CC module B unit #8 of 33 41 www.elegantAI.org

CC module B unit #8 of 34 41 www.elegantAI.org

Figure B8.12

Changing this slightly, we can create the following pattern:

🗒 Notes

Another nice pattern.

Sketch B8.13 another doodle with bezier

function setup()

{

 createCanvas(400, 400)

 noFill()

}

function draw()

{

 background(220)

 for (let i = 0; i < 100; i += 5)

 {

 bezier(10 + i, 10 + i, 25 + i, 350 + i, 300 + i, 50 + i, 300 +
i, 300 + i)

 }

 noLoop()

}

CC module B unit #8 of 35 41 www.elegantAI.org

CC module B unit #8 of 36 41 www.elegantAI.org

Figure B8.13

Another little doodle.

🗒 Notes

Just have fun playing.

Sketch B8.14 lovely jubbly

function setup()

{

 createCanvas(400, 400)

 strokeWeight(0.5)

 noFill()

}

function draw()

{

 background(220)

 for(let i = 0; i < 400; i += 5)

 {

 bezier(i * 2, 400 + i, i, i, i, i, 400 - i, 0)

 }

 noLoop()

}

CC module B unit #8 of 37 41 www.elegantAI.org

CC module B unit #8 of 38 41 www.elegantAI.org

Figure B8.14

Another (final) Bezier doodle.

Sketch B8.15 a bit of a splash

function setup()

{

 createCanvas(400, 400)

 strokeWeight(3)

}

function draw()

{

 background(255)

 noFill()

 for(let i = 0; i < 100; i += 5)

 {

 let x1 = random(10, 390)

 let y1 = random(10, 390)

 let x2 = random(100, 200)

 let y2 = random(100, 200)

 let x3 = random(200, 300)

 let y3 = random(200, 300)

 let x4 = random(10, 390)

 let y4 = random(10, 390)

 stroke(random(255), 0, 0)

 bezier(x1, y1, x2, y2, x3, y3, x4, y4)

 }

 noLoop()

 rect(0, 0, width, height)

CC module B unit #8 of 39 41 www.elegantAI.org

🗒 Notes

White background with a simple frame around it.

🌻 Challenge

Play with colours, alpha, strokeWeight(), etc.

}

CC module B unit #8 of 40 41 www.elegantAI.org

CC module B unit #8 of 41 41 www.elegantAI.org

Figure B8.15

