
Artificial
Intelligence

Module A

Unit #1

p5.js code
snippets 1

Module A Unit #1 code snippets part 1

Introduction to code snippets part 1

Sketch A1.1 function setup()

Sketch A1.2 function draw()

Sketch A1.3 createCanvas()

Sketch A1.4 background()

Sketch A1.5 RGB colours

Sketch A1.6 a circle()

Sketch A1.7 fill()

Sketch A1.8 strokeWeight()

Sketch A1.9 stroke()

Sketch A1.10 removing the line

Introduction to variables

Sketch A1.11 let there be variables

Sketch A1.12 width and height

Sketch A1.13 mouseX and mouseY

Sketch A1.14 moving the background

Sketch A1.15 changing the values

Symbols we use

Arithmetic Operators

Comparison Operators

Logical Operators

Assignment Operators

Maths Functions

Sketch A1.16 const

Sketch A1.17 for loop

Sketch A1.18 nested loop

Sketch A1.19 random()

Sketch A1.20 if() statement

Sketch A1.21 drawing a line

Sketch A1.22 stroke() and strokeWeight()

Sketch A1.23 point()

Functions

Sketch A1.24 creating a function

Sketch A1.25 calling a function

Sketch A1.26 creating a button step 1

Content

AI module A unit #1 of 2 120 www.elegantAI.org

http://www.elegantAI.org

Sketch A1.27 the button doing something step 2

Introducing arrays

Sketch A1.28 an empty array

Sketch A1.29 an array of objects

Sketch A1.30 createVector()

Sketch A1.31 map() function

Sketch A1.32 sin() function

Sketch A1.33 alpha

Sketch A1.34 text

Sketch A1.35 variable text

Sketch A1.36 the AND gate

Sketch A1.37 the OR gate

Sketch A1.38 p5.Vector.sub() function

Sketch A1.39 p5.Vector.add() function

Sketch A1.40 a bit more mouse

Sketch A1.41 mouseDragged() function

Sketch A1.42 mousePressed() function

Sketch A1.43 mouseReleased() function

AI module A unit #1 of 3 120 www.elegantAI.org

http://www.elegantAI.org

This is a gentle introduction to p5.js as it relates to the following modules
on developing simple machine learning models with ml5.js on the p5.js
platform. They are a brief introduction to the code you will be using.
These snippets are also helpful for those who have never coded before or
for those who are unfamiliar with p5.js.

My recommendation is that you work quickly through the coding snippets
but at your own pace and play around with the code; it will help you to
learn more about coding in p5.js. If there are challenges, then try them
out and see what else you can learn; the more practice the better. Over
time, it will become intuitive, like learning to ride a bike, drive a car, or
learning the piano. At first, it may seem strange, but later it becomes
second nature.

A brief explanation

🀄 You will have the code in the yellow box to type into the editor.

🀄 Any changes from the previous lines of code are highlighted in blue.

🀄 A sketch is a complete code which you can run (usually).

🀄 There will be a brief description of what you are doing and why.

🀄 You will have some additional information in the form of notes 🗒 .

🀄 Sometimes there will be some challenges 🌻 ; they are optional.

🀄 To help understand the code, there will be very brief descriptions
about some lines of code 🛠 which will appear in a box shown below.

🀄 The snippets will be kept as brief as possible.

🀄 Delete the default code and start with an empty editor.

🀄 Wherever relevant, I will include an image of what it should look like.

🀄 As you code each step, it doesn’t mean that the sketch is ready to run.

🀄 Make sure you have it set up as you want with the font size, theme,
etc.

Introduction to code snippets part 1 with p5.js

Line of code Explanation

AI module A unit #1 of 4 120 www.elegantAI.org

http://www.elegantAI.org

🀄 The curly brackets are important, as are any commas or semicolons;
take care.

AI module A unit #1 of 5 120 www.elegantAI.org

http://www.elegantAI.org

❗ this is our first sketch. Delete all of the default code and write the
code below.

The setup() function is a built-in function. It simply runs through all the
code between the two curly brackets {...} once. It is used to set up the
code you are going to run.

🗒 Notes

The setup() function is called once when the sketch begins running.
Declaring the function setup() sets a code block to run once
automatically when the sketch starts running. It's used to perform setup
tasks such as creating the canvas and initialising variables.

🛠 Code Explanation

Sketch A1.1 function setup()

function setup()

{

}

function setup() Runs everything coded in this function once

AI module A unit #1 of 6 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 7 120 www.elegantAI.org

Figure A1.1

http://www.elegantAI.org

❗ now add the code highlighted in blue.

The draw() function is the second built-in function. It is a loop function
because it goes through all the code between the curly {...} brackets
continuously in a loop.

🗒 Notes

This is a pre-built function. The draw() function is one that is called
repeatedly while the sketch runs. Declaring the function draw() sets a
block of code to run repeatedly once the sketch starts. It’s used to create
animations and respond to user inputs.

🛠 Code Explanation

Sketch A1.2 function draw()

function setup()

{

}

function draw()

{

}

function draw() Loops through the code inside the brackets continuously

AI module A unit #1 of 8 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 9 120 www.elegantAI.org

Figure A1.2

http://www.elegantAI.org

This function creates the canvas on which you are going to draw. It
requires at least two arguments. The first one is the width, and the
second is the height. Both are measured in pixels.

🗒 Notes

This creates a canvas element on the web page. The createCanvas()
function creates the main drawing canvas for a sketch. It should only be
called once at the beginning of setup(). Calling createCanvas() more
than once causes unpredictable behaviour. The first two parameters set the
dimensions of the canvas, and the values of the width and height system
variables. For example, calling createCanvas(900, 500) creates a
canvas that's 900 pixels wide by 500 pixels high. By default, width and
height are both 100. We can’t see anything yet because we need to give it
a background to code onto.

🌻 Challenge

Play with the dimensions of the canvas.

🛠 Code Explanation

Sketch A1.3 createCanvas()

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

}

createCanvas(400, 400) This creates a canvas to code onto. The two arguments
are the width and the height measured in pixels

AI module A unit #1 of 10 120 www.elegantAI.org

https://p5js.org/reference/p5/width/
https://p5js.org/reference/p5/height/
http://www.elegantAI.org

AI module A unit #1 of 11 120 www.elegantAI.org

Dimensions

http://www.elegantAI.org

AI module A unit #1 of 12 120 www.elegantAI.org

Figure A1.3

http://www.elegantAI.org

The background() function allows us to give the canvas a background
colour. By default, it is white. Generally, we will give it a grey colour (220),
where 0 is black and 255 is white; all the other numbers in between are
shades of grey.

🗒 Notes

Sets the colour used for the background of the canvas. By default, the
background is transparent. The background() function is typically used
within draw() to clear the display window at the beginning of each
frame. It can also be used inside setup() to set the background on the
first frame of animation. The value 220 gives you a very light grey,
whereas a value of 50 gives you a darker grey.

🌻 Challenges

1. Change the 220 to 0 or some other number.

2. Change the dimensions of the canvas from (400, 400) to (100,

600).

🛠 Code Explanation

Sketch A1.4 background()

function setup()

{

 createCanvas(400, 400)

 background(220)

}

function draw()

{

}

background(220) Gives the background a colour

AI module A unit #1 of 13 120 www.elegantAI.org

https://p5js.org/reference/p5/draw/
https://p5js.org/reference/p5/setup/
http://www.elegantAI.org

AI module A unit #1 of 14 120 www.elegantAI.org

Figure A1.4

http://www.elegantAI.org

Although most of the time a grey background is all you need, you might
want to have a brighter or different colour for your finished product.
Instead of one argument for the background, we can have three
arguments instead. They are still between 0 and 255, but they represent
the amount of red, green, and blue. This means you can mix them to
make lots of different colours. The default mode is RGB.

🗒 Notes

A background() with three arguments will interpret them as RGB, HSB,
or HSL colours depending on the current colorMode(). By default,
colours are specified in RGB values. The example above gives us a nice
orange colour. I will include much more information about colours in a
much later section.

🌻 Challenge

Play with the values to see what they do. If you just want red, then use
(255, 0, 0), if you want green, then use (0, 255, 0), and so on.

🛠 Code Explanation

Sketch A1.5 RGB colours

function setup()

{

 createCanvas(400, 400)

 background(200, 100, 10)

}

function draw()

{

}

background(200, 100, 10) This is how you can create colours with rgb values.

AI module A unit #1 of 15 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 16 120 www.elegantAI.org

Figure A1.5

http://www.elegantAI.org

We can draw a circle using the circle() function. It needs three
arguments. The first argument is the distance from the left-hand side. The
second argument is the distance from the top. The third argument is the
diameter of the circle.

🗒 Notes

This draws a circle of a diameter of 50 pixels. It is drawn 100 pixels from
the left-hand side and 300 pixels from the top.

🌻 Challenge

Try different diameters and co-ordinates.

🛠 Code Explanation

Sketch A1.6 a circle()

function setup()

{

 createCanvas(400, 400)

 background(200, 100, 10)

}

function draw()

{

 circle(100, 300, 50)

}

circle(100, 300, 50)
The circle has three arguments, the first is the x co-
ordinate (100), the second is the y co-ordinate (300) and
the third is the diameter (50)

AI module A unit #1 of 17 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 18 120 www.elegantAI.org

Figure A1.6

http://www.elegantAI.org

The fill() function allows you to fill the shape with a colour in the
same way as the background, so it can take one or three arguments.

🗒 Notes

We have created a nice yellow circle.

🌻 Challenge

Try some other colours or greyscale.

🛠 Code Explanation

Sketch A1.7 fill()

function setup()

{

 createCanvas(400, 400)

 background(200, 100, 10)

}

function draw()

{

 fill(250, 250, 10)

 circle(100, 300, 50)
}

fill(250, 250, 10) The fill() function takes one or three arguments for the
colour

AI module A unit #1 of 19 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 20 120 www.elegantAI.org

Figure A1.7

http://www.elegantAI.org

We can change the thickness of the line around the circle with the
strokeWeight() function. If you don’t specify it, the default is 1.

🗒 Notes

Sets the width of the stroke used for points, lines, and the outlines of
shapes.

🌻 Challenge

Try different stroke widths.

🛠 Code Explanation

Sketch A1.8 strokeWeight()

function setup()

{

 createCanvas(400, 400)

 background(200, 100, 10)

}

function draw()

{

 fill(250, 250, 10)

 strokeWeight(5)
 circle(100, 300, 50)

}

strokeWeight(5) We can give the thickness of a line a stronger weight, the
default is 1

AI module A unit #1 of 21 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 22 120 www.elegantAI.org

Figure A1.8

http://www.elegantAI.org

We can change the colour of the line with the stroke() function.

🗒 Notes

We get a nice blue line round the circle.

🌻 Challenge

Try different stroke() colours, use the RGB values.

🛠 Code Explanation

Sketch A1.9 stroke()

function setup()

{

 createCanvas(400, 400)

 background(200, 100, 10)

}

function draw()

{

 fill(250, 250, 10)

 strokeWeight(5)

 stroke(0, 0, 255)

 circle(100, 300, 50)

}

stroke(0, 0, 255) Giving the line an rgb value

AI module A unit #1 of 23 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 24 120 www.elegantAI.org

Figure A1.9

http://www.elegantAI.org

Replacing the stroke() function with the noStroke() function removes
the line altogether.

🗒 Notes

Disables drawing points, lines, and the outlines of shapes. Calling
noStroke() is the same as making the stroke completely transparent, as
in stroke(0, 0). If both noStroke() and noFill() are called,
nothing will be drawn to the screen.

🌻 Challenge

Try stroke(0, 0) and noFill().

🛠 Code Explanation

Sketch A1.10 removing the line

function setup()

{

 createCanvas(400, 400)

 background(200, 100, 10)

}

function draw()

{

 fill(250, 250, 10)

 strokeWeight(5)

 noStroke()

 circle(100, 300, 50)

}

noStroke() The noStroke() just simply removes any line round a shape

AI module A unit #1 of 25 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 26 120 www.elegantAI.org

Figure A1.10

http://www.elegantAI.org

Variables are very useful for storing data that we may want to access or
change later. Variables can be named with a single letter or a name. They
can have numbers in them but must never start with a number. Usually,
the name of the variables has some relevant meaning.

For instance, if you want to have a variable for speed, you would be best
to use the word speed rather than just s because later on in a long list
of code, you may forget what s represents. This is especially the case if
you have a lot of variables. At the same time, don’t make them too long;
otherwise, the code will look very messy and difficult to read by anyone
else but you.

In this next example, we are going to give the co-ordinates for the circle
names x and y. So that we can alter them in a later sketch. Variables are
very powerful and extremely useful.

To use a variable like x and y, then we need to define them. We use the
key word let. You can just define it or initialise it, for example:

Now in the sketch below, we are going to create a variable for the x co-
ordinate (which is 200) and the y co-ordinate (which is 300) of the circle
by calling them let x and let y.

One other important detail: scope. It is always a good idea to declare
variables at the beginning of a sketch; that way, they are available
everywhere. If you only declare them between two curly brackets, they
only live between those curly brackets and nowhere else. You will see that
I do both, so it is usually OK but something to bear in mind when
generating many functions and lines of code.

Mostly, we will be using numeric values (integers and floats), but just
occasionally, we will be using strings (words or letters).

Introduction to variables

let x this defines x as a variable

let x = 10 this gives x an initial value of 10

AI module A unit #1 of 27 120 www.elegantAI.org

http://www.elegantAI.org

Variables are a critical part of coding. To create a variable, you need to
inform the computer programme. In p5.js (JavaScript), we use the word
let before we name the variable. When we give the variable a name, it
can be a single letter, a series of letters and numbers, or words. They
cannot start with a number. To demonstrate this, we will replace the co-
ordinates of the circle with variables x and y. At the same time, we will
create a variable for the diameter.

🗒 Notes

The circle is exactly the same as before. Because we called it a let
variable, it means we have the option to change it later on in the code. We
don’t even need to give it an initial value, but it is a good idea to do so.
When you create a variable, it is called declaring a variable; giving it a
value is called initialising a variable.

Sketch A1.11 let there be variables

let x = 100

let y = 300

let diameter = 50

function setup()

{

 createCanvas(400, 400)

 background(200, 100, 10)

}

function draw()

{

 fill(250, 250, 10)

 strokeWeight(5)

 noStroke()

 circle(x, y, diameter)

}

AI module A unit #1 of 28 120 www.elegantAI.org

http://www.elegantAI.org

A variable is a sort of container to hold a value. For example, a variable
might contain the x-co-ordinate of a circle as a number or the name of
someone as a string, where a string is a letter, series of letters and
numbers, or words.

The scope of a variable depends on where you declare it. If you declare it
in a function, it can only be used in that function; that is called a local
scope. A global scope is where you declare a variable at the very start of
the sketch outside any functions.

🌻 Challenge

1. Alter the x, y, and diameter variables.

2. Change the names of the variables.

🛠 Code Explanation

let x = 100 We create a variable called x and initialise it with a

value of 100

let y = 300 We create a variable called y and initialise it with a
value of 300

let diameter = 50 We create a variable called diameter and initialise it
with a value of 50

AI module A unit #1 of 29 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 30 120 www.elegantAI.org

Figure A1.11

http://www.elegantAI.org

We can use other built-in variables. Two of these are called width and
height. They know the width of the canvas and the height of the canvas.
In this demonstration, we will replace the x and y values from the x and y
variables with the width and height variable names. This is going to put
the circle in the middle of the canvas, which is half the width and half
the height, hence width/2 and height/2.

🗒 Notes

This puts the circle bang in the middle.

🌻 Challenges

1. Change the dimensions of the canvas.

2. Change the position to width/4 and height/8.

3. Change the diameter to width/2.

Sketch A1.12 width and height

let x = 100

let y = 300

let diameter = 50

function setup()

{

 createCanvas(400, 400)

 background(200, 100, 10)

}

function draw()

{

 fill(250, 250, 10)

 strokeWeight(5)

 noStroke()

 circle(width/2, height/2, diameter)

}

AI module A unit #1 of 31 120 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

circle(width/2, height/2, diameter)
This gives us an x position of half
the width and a y position of half
the height.

AI module A unit #1 of 32 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 33 120 www.elegantAI.org

Figure A1.12

http://www.elegantAI.org

Another useful built-in variable is mouseX and mouseY. They are the co-
ordinates of the mouse pointer. We can move the centre of the circle to
where the mouse currently is. The co-ordinates are taken from the top-
left-hand corner.

🗒 Notes

The circle will follow the mouse around the canvas. You will notice that it
draws over the canvas as if with a paintbrush. This is because we draw the
background once in setup() and the circle is drawn repeatedly over the
top of a fixed canvas. If you put the background in the draw() function,
it draws the background on every iteration. This highlights the difference
between setup() and draw().

Sketch A1.13 mouseX and mouseY

let x = 100

let y = 300

let diameter = 50

function setup()

{

 createCanvas(400, 400)

 background(200, 100, 10)

}

function draw()

{

 fill(250, 250, 10)

 strokeWeight(5)

 noStroke()

 circle(mouseX, mouseY, diameter)

}

AI module A unit #1 of 34 120 www.elegantAI.org

http://www.elegantAI.org

🌻 Challenge

Change the diameter to mouseX or mouseY.

🛠 Code Explanation

circle(mouseX, mouseY, diameter)
mouseX is the x co-ordinate of the mouse
pointer and mouseY is the y co-ordinate
of the mouse pointer

AI module A unit #1 of 35 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 36 120 www.elegantAI.org

Figure A1.13

http://www.elegantAI.org

❗ remove background(200, 100, 10) from the setup() function.

Now put background(200, 100, 10) in the draw() function instead.
You will see that it draws the background and the circle; it does this
continuously.

🗒 Notes

When you move the mouse, the circle follows it.

Sketch A1.14 moving the background

let x = 100

let y = 300

let diameter = 50

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(200, 100, 10)

 fill(250, 250, 10)

 strokeWeight(5)

 noStroke()

 circle(mouseX, mouseY, diameter)

}

AI module A unit #1 of 37 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 38 120 www.elegantAI.org

Figure A1.14

http://www.elegantAI.org

❗ Remove the strokeWeight() and noStroke() functions.

In the setup() function, we are going to assign new values to the x, y,
and diameter variables.

🗒 Notes

We have a larger circle in a completely new position.

🌻 Challenge

Try other values.

Sketch A1.15 changing the values

let x = 100

let y = 300

let diameter = 50

function setup()

{

 createCanvas(400, 400)

 x = 250

 y = 75

 diameter = 100

}

function draw()

{

 background(200, 100, 10)

 fill(250, 250, 10)

 circle(x, y, diameter)

}

AI module A unit #1 of 39 120 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

x = 250 Re-assigned the value of x from 100 to 250

y = 75 Re-assigned the value of y from 300 to 75

diameter = 100 Re-assigned the diameter from 50 to 100

AI module A unit #1 of 40 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 41 120 www.elegantAI.org

Figure A1.15

http://www.elegantAI.org

In coding (as well as in maths), we use notation, symbols rather than
words. Most of the maths used in coding is fairly basic; some symbols,
however, may be unfamiliar. We are going to quickly cover the following:

🀄 Arithmetic Operators

These perform basic mathematical operations; they are essential for
numerical computations.

🀄 Comparison Operators

These compare values and return a boolean result (true or false).

🀄 Logical Operators

These combine boolean values to produce a single boolean result.

🀄 Assignment Operators

These are used to assign values to variables.

🀄 Maths Functions

Built-in functions that perform more complex mathematical operations.

Symbols we use

AI module A unit #1 of 42 120 www.elegantAI.org

http://www.elegantAI.org

Simple mathematical operators you will use frequently. They are used
throughout all coding and should be quite familiar except for, perhaps,
modulus.

Arithmetic Operators

+ Addition (2 + 4) will give you 6

- Subtraction (6 - 3) will give you 3

/ Division (8 / 2) will give you 4

* Multiplication (3 * 5) will give you 15

% Modulus gives you the remainder (10 % 8) will give you 2

= Equals (not equals to) 2 + 4 = 6

AI module A unit #1 of 43 120 www.elegantAI.org

http://www.elegantAI.org

In short, these are conditional statements where a condition needs to be
met. These are often used with while() loops.

Comparison Operators

== means equal to (5 == 5) is TRUE, (6 == 5) is FALSE

< means less than (6 < 8) is TRUE, (8 < 6) is FALSE,

<= means less than or equal to (6 <= 8) is TRUE, (6 <= 6) is also TRUE

> means greater than (8 > 6) is TRUE, (6 > 8) is FALSE,

>= means greater than or equal to (8 >= 6) is TRUE, (6 >= 6) is also TRUE

!= means not equal to (6 != 5) is TRUE (5 != 5) is FALSE

AI module A unit #1 of 44 120 www.elegantAI.org

http://www.elegantAI.org

These are used with if() statements. The if() statement can be similar
to the while() loop; if something is true or a condition is met, then do
something. For example, if(x < 100 && y > 50) means if x is less
than 100 AND y is greater than 50.

Logical Operators

&& means AND (x < 100 && y > 50)

|| means OR (x < 100 || y y > 50)

! Means NOT (x < 100 ! y y > 50)

AI module A unit #1 of 45 120 www.elegantAI.org

http://www.elegantAI.org

They are used often in coding (some much more than others). It is more
obvious when you see them in a meaningful context, which often goes for
all coding.

Assignment Operators

++ means increasing by 1 (x++) x is incremented by 1 each time

—- mean reducing or subtracting by 1 (y—) y is decremented by 1 each time

+= means addition (x += 10) or (x += y) same as x = x + y

-= means subtracting (x -= 10) or (x -= y) same as x = x - y

*= means multiplying (x *= 10) or (x *= y) same as x = x * 10

/= means division (x /= 2) or (x /= y) same as x = x / 10

AI module A unit #1 of 46 120 www.elegantAI.org

http://www.elegantAI.org

When using the mathematical notation, these can be very useful. Here are
just a few.

Maths Functions

floor() Calculates the closest integer value that is less than or equal to the
value of a number

abs()

Calculates the absolute value of a number. A number's absolute value is
its distance from zero on the number line. -5 and 5 are both five units
away from zero, so calling abs(-5) and abs(5) both return 5. The absolute
value of a number is always positive.

round()

Calculates the integer closest to a number. For example, round(133.8)
returns the value 134. The second parameter, decimals, is optional. It sets
the number of decimal places to use when rounding. For example,
round(12.34, 1) returns 12.3. It is zero by default.

sq()

Calculates the square of a number. Squaring a number means multiplying
the number by itself. For example, sq(3) evaluates 3 x 3 which is 9. The
sq(-3) evaluates -3 x -3 which is also 9. Multiplying two negative
numbers produces a positive number. The value returned by sq() is always
positive.

squrt()

Calculates the square root of a number. A number's square root can be
multiplied by itself to produce the original number. For example, sqrt(9)
returns 3 because 3 x 3 = 9. The sqrt() always returns a positive value.
sqrt() doesn't work with negative arguments such as sqrt(-9).

pow Calculates exponential expressions such as 23. For example, pow(2, 3)
evaluates the expression 2 x 2 x 2. pow(2, -3) evaluates 1 ÷ (2 x 2 x 2).

ceil()
Calculates the closest integer value that is greater than or equal to a
number. For example, calling ceil(9.03) and ceil(9.97) both return the
value 10.

exp() Calculates the value of Euler's number e (2.71828...) raised to the power
of a number.

AI module A unit #1 of 47 120 www.elegantAI.org

http://www.elegantAI.org

Sometimes we don’t want a variable to change; if that is the case, we use
constants. This is so we don’t accidentally change something. For this, we
use const rather than let. Watch what happens when we change it from
the previous sketch.

🗒 Notes

You get an error message when you try to alter it later in the code.

🌻 Challenge

Remove the x = 250, y = 75 and diameter = 100 reference in the
setup() function. See if that changes the outcome.

Sketch A1.16 const

const x = 100

const y = 300

const diameter = 50

function setup()

{

 createCanvas(400, 400)

 x = 250

 y = 75

 diameter = 100

}

function draw()

{

 background(200, 100, 10)

 fill(250, 250, 10)

 circle(x, y, diameter)

}

AI module A unit #1 of 48 120 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

const x = 100 The x variable is now fixed

const y = 300 The y variable is now fixed

const diameter = 50 The diameter variable is now fixed

AI module A unit #1 of 49 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 50 120 www.elegantAI.org

Figure A1.16

http://www.elegantAI.org

❗ Start a new sketch or delete much of the previous sketch. Putting the
background() back into the setup() function.

If we want to draw lots of circles, we could write a line of code for each
circle, but there is a better way using loops. For this, we can use what is
called a for() loop. The for() loop has three parts to it. You declare and
initialise a variable, in this case x, with a starting value, in this case 20.
You then set the conditional limit of the value, in this case 400, at which
point the loop stops. The third and final part of the loop determines how
much you are increasing (or decreasing) the variable on each iteration, in
this case, we are increasing it by 40.

🗒 Notes

You will get a line of ten circles across the canvas. You will find that
for() loops are used a lot; after a while, they become very intuitive. Also,
note that here we have to use the semicolons.

Sketch A1.17 for loop

function setup()

{

 createCanvas(400, 400)

 background(220)

}

function draw()

{

 for (let x = 20; x < 400; x += 40)

 {

 circle(x, 200, 20)

 }

}

AI module A unit #1 of 51 120 www.elegantAI.org

http://www.elegantAI.org

🌻 Challenge

Alter the values in the for() loop and see what effect it has. You might
inadvertently create an infinite loop, so I recommend that you pause (stop)
the code running while you make changes.

🛠 Code Explanation

for () The for() loop is continuous until a condition is met

let x = 20; We define and initialise the variable being 20

x < 400; We define the limit of the loop being 400

x += 40 We define the changes to the variable adding 40

+= This is shorthand for x = x + 40

AI module A unit #1 of 52 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 53 120 www.elegantAI.org

Figure A1.17

http://www.elegantAI.org

We can have a loop within a loop. In this way, we can also loop around the
y value. The for() loop for the y variable looks exactly the same because
it is. Also, remember to put the y variable into the circle() function.

🗒 Notes

We have now filled the canvas with circles.

🌻 Challenge

Have a third nested loop so that the diameter increases for each circle.

Sketch A1.18 nested loop

function setup()

{

 createCanvas(400, 400)

 background(220)

}

function draw()

{

 for (let x = 20; x < 400; x += 40)

 {

 for (let y = 20; y < 400; y += 40)

 {

 circle(x, y, 20)

 }

 }

}

AI module A unit #1 of 54 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 55 120 www.elegantAI.org

Figure A1.18

http://www.elegantAI.org

❗ Remove the for() loops.

We can use a random() function when necessary to mix up the data. The
random() function has two versions depending on how many arguments
you have. If you have one argument, it will pick a random number between
zero and that number; if you have two arguments, then it will pick a
random number between those two numbers.

🗒 Notes

You see that the draw() function draws each circle at a random position
on the canvas.

🌻 Challenge

Change random(400) to random(100, 300) for both the x and y
variables.

🛠 Code Explanation

Sketch A1.19 random()

function setup()

{

 createCanvas(400, 400)

 background(220)

}

function draw()

{

 circle(random(400), random(400), 20)

}

random(400) Picks a random number between 0 and 400

AI module A unit #1 of 56 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 57 120 www.elegantAI.org

Figure A1.19

http://www.elegantAI.org

Another useful function is the if() statement. Here, something is true
until it is false (and vice versa). When a condition is met, then the
process ends; in this case, we will draw 100 circles in random positions. We
use a variable to keep count of the number of circles drawn, called count
(obviously).

🗒 Notes

The programme keeps drawing the circles while the condition is true
(count is less than 100). Once that condition is false (there are 100
circles), it stops.

🛠 Code Explanation

Sketch A1.20 if() statement

let count = 0

function setup()

{

 createCanvas(400, 400)

 background(220)

}

function draw()

{

 if(count <= 100)

 {

 circle(random(400), random(400), 20)

 }

 count++

}

if(count <= 100) The if() statement where the condition is true if the count
variable is less than 100, false if it is more than 100

AI module A unit #1 of 58 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 59 120 www.elegantAI.org

Figure A1.20

http://www.elegantAI.org

We can draw a line as well as other shapes. The line has four arguments:
the first two are the x and y co-ordinates of one end of the line (100,
100) and the other two are the x and y co-ordinates of the other end of
the line (300, 300).

🗒 Notes

It draws a simple line.

🌻 Challenge

Draw several lines, all starting from the centre of the canvas.

🛠 Code Explanation

Sketch A1.21 drawing a line

function setup()

{

 createCanvas(400, 400)

 background(220)

}

function draw()

{

 line(100, 100, 300, 300)

}

line(100, 100, 300, 300) Draws a line with co-ordinates (100, 100) and (300,
300) for each end

AI module A unit #1 of 60 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 61 120 www.elegantAI.org

Figure A1.21

http://www.elegantAI.org

Adding a bit of colour and thickness.

🗒 Notes

As with the circle, we can change the appearance of the line.

🌻 Challenge

Can you draw several lines in random positions, with random colours and
strokes?

Sketch A1.22 stroke() and strokeWeight()

function setup()

{

 createCanvas(400, 400)

 background(220)

 stroke(255, 0, 0)

 strokeWeight(5)

}

function draw()

{

 line(100, 100, 300, 300)

}

AI module A unit #1 of 62 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 63 120 www.elegantAI.org

Figure A1.22

http://www.elegantAI.org

The point() function draws a pixel at the co-ordinates (100, 300). As
this will be very small, we will change the strokeWeight(10).

🗒 Notes

We have a point (or a pixel) at (100, 300). The default is one pixel,
which is too small to see easily; hence, to add a strokeWeight() of 10.

🌻 Challenge

Could you draw a line of pixels with strokeWeight(1) using a for()
loop or an if() statement?

🛠 Code Explanation

Sketch A1.23 point()

function setup()

{

 createCanvas(400, 400)

 background(220)

 stroke(255, 0, 0)

 strokeWeight(10)

}

function draw()

{

 point(100, 300)

}

point(100, 300) Draws a pixel at those co-ordinates

AI module A unit #1 of 64 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 65 120 www.elegantAI.org

Figure A1.23

http://www.elegantAI.org

In p5.js, functions are at the core of everything. You can tell that there is
a function because it is prefixed with that word; for instance, function
setup() or function draw(), these are prebuilt functions. We can,
however, create our own functions and call them whatever we want (there
are some keywords we cannot use because they are already taken).

We can also call a function inside another function, as you will see later.
If you create a function, it won’t necessarily do anything until you call it.
By that, I mean you have to reference it in another function, usually the
draw() function, but it can be in any other active function.

In the next example, we will create a function called thing() and then
call it from the draw() function. In the example following that one, we
will create a function called changeColour(), this is only called when
we click on the button we have created. The function just sits there until
it is called.

Functions

AI module A unit #1 of 66 120 www.elegantAI.org

http://www.elegantAI.org

We create a function called thing, which should draw a circle. But
nothing happens.

🗒 Notes

Although we have created a function, the computer reads it but will only
action it when told to do so.

🌻 Challenges

1. Change the name of the function.

2. Have the function do something else.

🛠 Code Explanation

Sketch A1.24 creating a function

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

}

function thing()

{

 circle(200, 300, 100)

}

function thing() Creating and naming a function

AI module A unit #1 of 67 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 68 120 www.elegantAI.org

Figure A1.24

http://www.elegantAI.org

Now we call the thing() function in the draw() function.

🗒 Notes

Now the thing() function is actioned through the draw() function. It
loops continuously.

🌻 Challenge

Put the thing() function in setup().

🛠 Code Explanation

Sketch A1.25 calling a function

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 thing()

}

function thing()

{

 circle(200, 300, 100)

}

thing() Calling the function called ‘thing’

AI module A unit #1 of 69 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 70 120 www.elegantAI.org

Figure A1.25

http://www.elegantAI.org

We can create various DOM (Document Object Model) elements like
buttons, radio buttons, sliders, and text boxes, which can change the
appearance and make the canvas interactive. To start with, we are creating
a button underneath the canvas with the words ”random colour”
written on it.

🗒 Notes

We have a button that you can click on, but nothing happens. We need
another function to execute when the button is clicked.

🛠 Code Explanation

Sketch A1.26 creating a button (step 1)

let button

function setup()

{

 createCanvas(400, 400)

 button = createButton('random colour')

 button.style('font-size', '30px')

}

function draw()

{

 background(220)

}

let button Create a button variable

button = createButton('random colour') This creates a button with the
text inside it

button.style('font-size', '30px') Change the text size inside
button

AI module A unit #1 of 71 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 72 120 www.elegantAI.org

Figure A1.26

http://www.elegantAI.org

Now we will need a function so that when the button is clicked, it will
change the backg ro un d . The new funct io n w i l l be cal le d
changeColour(). We add the mousePressed() function to the button,
and when it is clicked, it will then call that function. We need a variable to
hold the colour, and we call that newColour with an initialised value of
220.

🗒 Notes

Now the background changes (greyscale) every time you click on the
button, giving you a greyscale between 0 and 255.

Sketch A1.27 the button doing something (step 2)

let button

let newColour

function setup()

{

 createCanvas(400, 400)

 newColour = 220

 button = createButton('random colour')

 button.style('font-size', '30px')

 button.mousePressed(changeColour)

}

function draw()

{

 background(newColour)

}

function changeColour()

{

 newColour = random(255)

}

AI module A unit #1 of 73 120 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

button.mousePressed(changeColour)
This calls the function ‘changeColour’
when the button is clicked with the
mouse

function changeColour()
This is new function we have created
which is activated when we click on the
button

newColour = random(255) We get a new random value between 0
and 255, this is the new colour

background(newColour) Instead of the value we can replace
with a variable name

AI module A unit #1 of 74 120 www.elegantAI.org

http://www.elegantAI.org

An array is a key and vital part of coding. It is a way of storing data so
that it can be accessed, added to, or altered at a later date. One way to
think of it is as a series of boxes that can hold bits of data (whether
numbers or words). An array has a numbering system for each box, called
an index. In coding, counting starts with zero, not one. So the first box
is index 0, the second box is index 1, the third is index 2, and so on.
You can imagine that it can be confusing that the third box is index 2.

The format to identify an array is square brackets such as [23, 15, 37,
42, ...] so we can describe this array as follows:

index[0] is 23,

index[1] is 15,

index[2] is 37, and

index[3] is 42, etc.

Introducing arrays

AI module A unit #1 of 75 120 www.elegantAI.org

Index numbering system

The values (elements) inside each box

http://www.elegantAI.org

On the top row are the index[] references and on the bottom row are
the actual values at those reference points. We need to give the array a
name. We can use let to define the array, such as:

We can initialise it with some initial values if we want.

let numbers = [] This is an empty array.

let numbers = [23, 15, 37, 42,
8, 51, 22, 99] The array has now got some values in it

AI module A unit #1 of 76 120 www.elegantAI.org

http://www.elegantAI.org

❗ We are starting with a new sketch.

We are starting with an empty array called data. This means it can be
any size, and we can put data into it. The data can be numbers, words, or
objects.

In this example, we are going to fill an empty array with x and y values.
Arrays have square brackets [] around them. We are calling our array
data, and we are going to put data into it using a push() function. We
push the values of the x and y co-ordinates into the data array.

As we click on the canvas, you will see something happen in the console;
this is because we have used a very useful function called
console.log() and inside the brackets, we have put the name of the
array. What you see in the console is what is inside the array.

Sketch A1.28 an empty array

let data = []

function setup()

{

 createCanvas(400, 400)

 background(220)

}

function mousePressed()

{

 let x = mouseX

 let y = mouseY

 data.push(x, y)

 circle(x, y, 50)

 console.log(data)

}

AI module A unit #1 of 77 120 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Have a look inside each array by clicking on the arrow at the start of the
line. In this example, there are six elements, two for each of the circles.
Just for clarification, the name of the array (data) is made up; we could
call it anything (as long as it isn’t a keyword already taken by p5.js).

🌻 Challenge

Change the name of the array.

🛠 Code Explanation

let data = [] We define an empty array

let x = mouseX Our x value is the mouseX position when we click

let y = mouseY Our y value is the mouseY position when we click

data.push(x, y) The x and y values are pushed into the data array

console.log(data) We can see inside the data array

AI module A unit #1 of 78 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 79 120 www.elegantAI.org

Figure A1.28a

Figure A1.28b

http://www.elegantAI.org

Another way to use an array is to have objects. In this example, an object
is one circle. Each object has an x and y value. We will use
console.log(data) as before to see the difference. Each object is
called inputs to collect the x and y co-ordinates when you click on the
canvas.

🗒 Notes

We use console.log(data) to see inside the array. It gives you a list
of objects, each one representing a circle. Inside each object are the x
and y inputs. Click on the arrow to reveal the contents of the array.

Sketch A1.29 an array of objects

let data = []

function setup()

{

 createCanvas(400, 400)

 background(220)

}

function mousePressed()

{

 let inputs = {

 x: mouseX,

 y: mouseY

 }

 data.push(inputs)

 circle(inputs.x, inputs.y, 50)

 console.log(data)

}

AI module A unit #1 of 80 120 www.elegantAI.org

http://www.elegantAI.org

🌻 Challenge

Change the variable names of x and y to, say, flower and animal. See
where else you have to change them.

🛠 Code Explanation

let inputs = {...} We give the collective name for the x and

y values as inputs

x: mouseX For the x value we use a colon then the
input value or variable

y: mouseY For the y value we use a colon then the
input value or variable

circle(inputs.x, inputs.y, 50) The x co-ordinate of the object (inputs) is
inputs.x, repeated for the y component

AI module A unit #1 of 81 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 82 120 www.elegantAI.org

Figure A1.29a

Figure A1.29b

http://www.elegantAI.org

❗ We are starting a completely new sketch.

This creates a new p5.Vector object. A vector can be thought of in
different ways. One perspective is: a vector is like an arrow pointing in
space. Vectors have both magnitude (length) and direction. This view is
helpful for programming motion. A vector's components determine its
magnitude and direction. For example, calling createVector(3, 4)
creates a new p5.Vector object with an x component of 3 and a y
component of 4. The length is measured from the origin; this vector's tip is
3 units to the right and 4 units down.

Another really useful bit of coding is the comments symbol //. This is
useful for a number of reasons:

Reason 1⃣ to leave information in the code for yourself or someone else,

Reason 2⃣ you can remove a line of code (without deleting it completely) to
see what happens if that code is removed (for debugging a problem), and

Reason 3⃣ keep a bunch of code that you want to use later but not need
it at that precise moment.

The computer bypasses anything when a line starts with the // before
any text; it just ignores it.

Sketch A1.30 createVector()

function setup()

{

 createCanvas(400, 400)

 background(220)

 // Create p5.Vector objects

 let p1 = createVector(100, 100)

 let p2 = createVector(200, 200)

 let p3 = createVector(300, 300)

 // draw circles

 // fill(255, 0, 0)

 circle(p1.x, p1.y, 50)

AI module A unit #1 of 83 120 www.elegantAI.org

https://p5js.org/reference/p5/p5.Vector
http://www.elegantAI.org

🗒 Notes

We have drawn three circles, then three points.

🌻 Challenge

If you console.log(p1), you can see inside the vector object for that
vector. See image below; it is rather confusing, but you can see the
difference in the array between numbers and objects (object-orientated
programming).

🛠 Code Explanation

 circle(p2.x, p2.y, 50)

 circle(p3.x, p3.y, 50)

 // draw points

 strokeWeight(6)

 point(p1)

 point(p2)

 point(p3)

}

// Create p5.Vector objects
Using the comments symbol, the
programme ignores it, useful for
information

// fill(255, 0, 0)
This line of code is also ignored, if you
remove the // the programme will
execute it.

let p1 = createVector(100, 100)
Creates a vector object with an x and a
y component and attributes it to a
variable (p1 in this case)

circle(p1.x, p1.y, 50) Uses the x and y components of the
object that is within the p1 variable

point(p1) Drawing the point extracting the x and y
components from the variable object

AI module A unit #1 of 84 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 85 120 www.elegantAI.org

Sketch A1.30a

Figure A1.30b

http://www.elegantAI.org

❗ we are starting a new sketch.

We can remap values, scaling them through the map() function. In this
example, we have a line that follows the movement of the mouse (mouseX)
from one side to the other. The second line is mapped from [0, 400] to
[0, 100]. It still follows the movement of the mouse but is now scaled
accordingly.

🗒 Notes

This is just an illustration of what mapping is. One way to imagine it is: if
you have a scale between 27 and 187 and you want to express it as a
percentage, then mapping can scale it such that 0% is 27 and 100% is 187.

🌻 Challenge

Apply the map() function to the diameter of a circle.

Sketch A1.31 map() function

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 strokeWeight(10)

 line(0, 150, mouseX, 150)

 let x = map(mouseX, 0, 400, 0, 100)

 line(0, 250, x, 250)

}

AI module A unit #1 of 86 120 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

let x = map(mouseX, 0, 400, 0, 100)
This maps the value of the mouseX
value from 0-400 to 0-100 and
returns the value to the x variable

AI module A unit #1 of 87 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 88 120 www.elegantAI.org

Figure A1.31

http://www.elegantAI.org

❗ We start with a new sketch.

We have, at our disposal, the mathematical sin() function. The output is
always between -1 and +1. The input is measured in radians by default,
but to make it more intuitive, we change the units to degrees with the
angleMode() function. We make the canvas width 360 (as in 360˚ cycle)
and we map the output from (-1, 1) to (0, height) to be more
visible.

🗒 Notes

We get a nice sine wave.

🌻 Challenge

Try cos().

Sketch A1.32 sin() function

function setup()

{

 createCanvas(360, 400)

 angleMode(DEGREES)

 strokeWeight(5)

}

function draw()

{

 background(220)

 for (let x = 0; x < width; x++)

 {

 let y = sin(x)

 y = map(y, -1, 1, 0, height)

 point(x, y)

 }

}

AI module A unit #1 of 89 120 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

angleMode(DEGREES) Converts the angle units from radians (default) to

degrees.

let y = sin(x) The y variable is the result of the sin() function on the x
value

AI module A unit #1 of 90 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 91 120 www.elegantAI.org

Figure A1.32

http://www.elegantAI.org

❗ New sketch again

With colour, we can add a fourth argument, which is the alpha value,
which determines how much transparency there is. With a value of 0, it is
completely transparent; with a value of 255, it is completely opaque.

🗒 Notes

Creating lots of random red circles with an alpha of 100. This alpha also
works with greyscale (if there are just two arguments) and with
stroke().

🌻 Challenge

Try different values of alpha.

🛠 Code Explanation

Sketch A1.33 alpha

function setup()

{

 createCanvas(400, 400)

 background(255)

}

function draw()

{

 fill(255, 0, 0, 100)

 circle(random(width), random(height), 50)

}

fill(255, 0, 0, 100) The fill() function now has four arguments, red, green,
blue and alpha.

AI module A unit #1 of 92 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 93 120 www.elegantAI.org

Figure A1.33

http://www.elegantAI.org

❗ starting a new sketch.

We can write text on the canvas using the text() function. The text()
function has three arguments: the first is the text (or named variable), the
second and third are the x and y co-ordinates. The origin of the text is
taken at the top right-hand corner. To put the origin in the centre of the
text, we use the textAlign() function. The text is what is called a
string, and it has to have speech (single or double) marks around the text.

🗒 Notes

We can add colour with stroke() and fill(). You can also add new
fonts, but you have to upload them.

🌻 Challenge

Try commenting out the textAlign() line of code.

Sketch A1.34 text

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 textAlign(CENTER, CENTER)

 textSize(64)

 text('Hello', 200, 200)

}

AI module A unit #1 of 94 120 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

textAlign(CENTER, CENTER) This moves the origin from the top left hand

corner of the text into the centre of the text

textSize(64) You can increase the text size

text('Hello', 200, 200)
The text function has three arguments, the first
is the text, the second and third are the co-
ordinates

AI module A unit #1 of 95 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 96 120 www.elegantAI.org

Figure A1.34

http://www.elegantAI.org

Instead of text as a string, we can use the value of a variable and put
that on the canvas as text. In this example, we will give the values of the
x and y co-ordinates to the mouse pointer.

🗒 Notes

Added a splash of colour and spaced them out. It gives you the value of
the variable in this case, the x position and the y position of the mouse
point.

🛠 Code Explanation

Sketch A1.35 variable text

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 textAlign(CENTER, CENTER)

 textSize(64)

 fill(200, 0, 0)

 text(mouseX, mouseX, mouseY - 32)

 fill(0, 0, 200)

 text(mouseY, mouseX, mouseY + 32)

}

text(mouseX, mouseX, mouseY -
32)

The mouse x position is displayed using
mouseX

text(mouseY, mouseX, mouseY +
32)

The mouse y position is displayed using
mouseY

AI module A unit #1 of 97 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 98 120 www.elegantAI.org

Figure A1.35

http://www.elegantAI.org

❗ Start a new sketch.

We are dividing the canvas into four quadrants. If the mouse is in the top
left, the circle is filled red; if top right, then filled blue; bottom right, it is
filled green; and the bottom left, the circle will be just white. This makes
use of the AND logic, which uses the symbols &&.

Sketch A1.36 the AND gate

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 if(mouseX <= 200 && mouseY <= 200)

 {

 fill(200, 0, 0)

 }

 else if(mouseX >= 200 && mouseY <= 200)

 {

 fill(0, 0, 200)

 }

 else if(mouseX >= 200 && mouseY >= 200)

 {

 fill(0, 200, 0)

 }

 else

 {

 fill(255)

 }

AI module A unit #1 of 99 120 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

As you move the mouse around the circle in each quadrant, it changes the
colour of the circle. This makes the simple AND, OR, and NOT logic very
powerful, even though you only have two basic variables. In other
examples, you may well have many more variables.

🛠 Code Explanation

 circle(200, 200, 100)

}

if(mouseX <= 200 && mouseY <=
200)

In summary it is saying, if the x is less than
(or equal to) 200 AND y is less than 200

else if(mouseX >= 200 &&
mouseY <= 200)

Using the else if() function. If x is greater
200 AND y is less than 200

else if(mouseX >= 200 &&
mouseY >= 200)

If x is greater than 200 AND y is greater
than 200

else If none of the others are true then do this…

AI module A unit #1 of 100 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 101 120 www.elegantAI.org

Figure A1.36

http://www.elegantAI.org

The OR gate is the opposite of the AND logic. In this one, we simply
change one line of code from AND to OR, and the difference is obvious.
Work through the logic of why that is the case. The OR symbol is two
vertical lines (pipes) ||.

Sketch A1.37 the OR gate

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 if(mouseX <= 200 || mouseY <= 200)

 {

 fill(200, 0, 0)

 }

 else if(mouseX >= 200 && mouseY <= 200)

 {

 fill(0, 0, 200)

 }

 else if(mouseX >= 200 && mouseY >= 200)

 {

 fill(0, 200, 0)

 }

 else

 {

 fill(255)

 }

 circle(200, 200, 100)

}

AI module A unit #1 of 102 120 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We get three quarters of the canvas red (top left, top right and bottom
left); the remainder is still green.

🌻 Challenges

1. Try other variations of AND or OR logic.

2. Recode this sketch so that you colour different segments.

3. Try using the NOT logic !.

🛠 Code Explanation

if(mouseX <= 200 || mouseY <=
200)

This contains two possible truths. Either x
is less than 200 OR y is less than 200

AI module A unit #1 of 103 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 104 120 www.elegantAI.org

Figure A1.37

http://www.elegantAI.org

Here we are going to create two vector objects, one vector is the centre
of the canvas, the other vector is the position of the mouse point. We
subtract the mouse point vector (mouseX and mouseY) from the centre of
the canvas vector.

🗒 Notes

The red line is the subtraction of the other two vectors.

Sketch A1.38 p5.Vector.sub() function

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 let v1 = createVector(mouseX, mouseY)

 let v2 = createVector(200, 200)

 let v3 = p5.Vector.sub(v1, v2)

 strokeWeight(5)

 stroke('red')

 line(v3.x, v3.y, v2.x, v2.y)

 stroke('blue')

 line(v1.x, v1.y, v2.x, v2.y)

}

AI module A unit #1 of 105 120 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

let v3 = p5.Vector.sub(v1, v2) This function allows us the subtract two

vectors, return a third vector object

stroke('red')

As well as rgb colour values we can use
names as a shortcut. There lots of
colours to chose from. Needs to have
speech marks

AI module A unit #1 of 106 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 107 120 www.elegantAI.org

Figure A1.38

http://www.elegantAI.org

The result may look the same, but now the p1 vector is being added to
the p2 vector, making the p3 vector (red) much bigger.

🗒 Notes

There are a whole raft of vector functions; they are too many to mention
here.

🌻 Challenge

Try .mult() instead of .add().

🛠 Code Explanation

Sketch A1.39 p5.Vector.add() function

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 let v1 = createVector(mouseX, mouseY)

 let v2 = createVector(200, 200)

 let v3 = p5.Vector.add(v1, v2)

 strokeWeight(5)

 stroke('red')

 line(v3.x, v3.y, v2.x, v2.y)

 stroke('blue')

 line(v1.x, v1.y, v2.x, v2.y)

}

let v3 = p5.Vector.add(v1, v2) Adds two vectors returning a third vector

AI module A unit #1 of 108 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 109 120 www.elegantAI.org

Figure A1.39

http://www.elegantAI.org

❗ New sketch

There are a lot of functions we can use with the mouse: its movement, the
buttons, and the mouse wheel. Here are just a few to demonstrate
functions relating to the mouse buttons. This is our starting sketch.

🗒 Notes

We get a black square, nothing more, nothing less.

Sketch A1.40 a bit more mouse

let value = 0

function setup()

{

 createCanvas(400, 400)

 background(220)

}

function draw()

{

 fill(value)

 square(100, 100, 100)

}

AI module A unit #1 of 110 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 111 120 www.elegantAI.org

Figure A1.40

http://www.elegantAI.org

Click on the canvas and keep the button down as you move the mouse
across the canvas. We can change the colour of the square as we click and
drag the mouse across the canvas.

🗒 Notes

The greyness of the square changes as we drag the mouse.

Sketch A1.41 mouseDragged() function

let value = 0

function setup()

{

 createCanvas(400, 400)

 background(220)

}

function draw()

{

 fill(value)

 square(100, 100, 100)

}

function mouseDragged()

{

 value += 2

 if (value > 255)

 {

 value = 0

 }

}

AI module A unit #1 of 112 120 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

function mouseDragged() Senses when the mouse has been click

and moved at the same time.

value += 2 Adds 2 every time the mouse is moved

AI module A unit #1 of 113 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 114 120 www.elegantAI.org

Figure A1.41

http://www.elegantAI.org

This is a simple way to toggle using a mouse button.

🗒 Notes

Every time you click on the canvas, the square toggles between white and
then black.

Sketch A1.42 mousePressed() function

let value = 0

function setup()

{

 createCanvas(400, 400)

 background(220)

}

function draw()

{

 fill(value)

 square(100, 100, 100)

}

function mousePressed()

{

 if (value === 0)

 {

 value = 255

 }

 else

 {

 value = 0

 }

}

AI module A unit #1 of 115 120 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

function mousePressed() Senses when the mouse button has been pressed

AI module A unit #1 of 116 120 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #1 of 117 120 www.elegantAI.org

Figure A1.42

http://www.elegantAI.org

Does the same but only acts when the button is released.

🗒 Notes

A slight difference, but it can be useful when drawing a line that finishes
when you release the mouse button.

Sketch A1.43 mouseReleased() function

let value = 0

function setup()

{

 createCanvas(400, 400)

 background(220)

}

function draw()

{

 fill(value)

 square(100, 100, 100)

}

function mouseReleased()

{

 if (value === 0)

 {

 value = 255

 }

 else

 {

 value = 0

 }

}

AI module A unit #1 of 118 120 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

function mouseReleased() Senses when the mouse button has been released

AI module A unit #1 of 119 120 www.elegantAI.org

http://www.elegantAI.org

If you worked through all this, well done. Now you have a basic but sound
understanding of the workings of p5.js. Next, we can start the fun bit of
machine learning. Enjoy.

Finally

AI module A unit #1 of 120 120 www.elegantAI.org

http://www.elegantAI.org

