
Artificial
Intelligence

Module A

Unit #2

linear
regression

Module A Unit #2 linear regression with ml5.js

Introduction to linear regression

The index.html file

Sketch A2.1 index.html

Sketch A2.2 initial sketch with data points

Sketch A2.3 sketch revised

Sketch A2.4 revising the data

Sketch A2.5 adding the model

Sketch A2.6 adding the data

Sketch A2.7 training on the data

Sketch A2.8 predicting the result

Sketch A2.9 the callback function

Sketch A2.10 batch size

Sketch A2.11 increasing the batch size

Sketch A2.12 an alternative ending

Content

AI module A unit #2 of 2 45 www.elegantai.org

http://www.elegantai.org

In simple terms, we are going to use the data points for a straight line. We
will use this dataset to train the model. It will then predict the
relationship between x and y of a simple straight line (linear). We will be
drawing the prediction so we have a visual result to see how well it has
performed.

This may seem like a rather simple exercise, but it will serve as a
demonstration of how a machine learning neural network will learn,
demonstrating its usefulness and also its limitations. To make it a bit more
realistic and challenging, we are going to introduce a bit of variance; what
this means is adding some randomness to the data.

This is because real-world data is very rarely so neat and tidy. Machine
learning (AI) comes into its own when patterns aren’t necessarily so
obvious. This becomes even more so when there is a lot of data, with many
variables, and the usual strategies or algorithms would struggle.

Here we have two variables. The x and the y co-ordinates. The equation
for a line is y = mx + b. The m is the slope of the line, and the b is
where it intercepts the y-axis. We artificially create the data and add in
the variance. This is synthetic data; it isn’t real data seen in the world,
but it will serve the purpose.

We train the model on this data and get the model to predict a line
through the data. Its prediction is the generalisation (or best guess) of the
data. The beauty of this exercise is that we can play around with a
number of hyperparameters, such as the number of hidden layers, the
number of nodes (in each layer), the activation function, the learning rate,
the optimiser, the batch size, and of course, the epochs.

Introduction to linear regression with ml5.js

AI module A unit #2 of 3 45 www.elegantai.org

http://www.elegantai.org

To speed up, or even make it work at all, depending on your machine or
browser, you may need to have one of the following lines of code:

ml5.setBackend("webgl")
ml5.setBackend("cpu")

By default, we are going to add webgl to make sure that it works across
all browsers. You can add cpu instead; it might work very much faster if
you do, but, however, it might affect the programme depending on your
machine and browser. Other alternatives are gpu or webgpu. Just
experiment at a later date to get a better performance.

Backend Stuff

AI module A unit #2 of 4 45 www.elegantai.org

http://www.elegantai.org

In the unit a gentle overview of ml5.js I showed you how to add
the line of code into the index.html file. This is important; otherwise, there
is no neural network to train the model. So, if you have not read through
that section, it is important that you do so, or you can duplicate the
template I have provided on my website by clicking on the button, and
then come back to this unit.

Introducing ml5.js

AI module A unit #2 of 5 45 www.elegantai.org

http://www.elegantai.org

The line of code needs to be added to the index.html file before you do
anything else.

The index.html file

<!DOCTYPE html>

<html lang="en">

 <head>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.11.0/p5.js"></script>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.11.0/addons/p5.sound.min.js"></script>

 <script src="https://unpkg.com/ml5@1/dist/ml5.min.js"></
script>

 <link rel="stylesheet" type="text/css" href="style.css">

 <meta charset="utf-8" />

 </head>

 <body>

 <main>

 </main>

 <script src="sketch.js"></script>

 </body>

</html>

AI module A unit #2 of 6 45 www.elegantai.org

http://www.elegantai.org

This is our starting sketch.

Sketch A2.1 starting sketch

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

}

AI module A unit #2 of 7 45 www.elegantai.org

http://www.elegantai.org

We create a for() loop to draw each data point as a blue circle. We
space them out by 10 pixels.

🗒 Notes

For each value of i, this will be the x co-ordinate of the circle; the
height-i is the y co-ordinate. Simply, this is a straight line where y =
x, and the slope m is effectively 1 and the intercept b is 0.

🛠 Code Explanation

Sketch A2.2 drawing the points on a line

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 for (let i = 0; i < width; i += 10)

 {

 fill(0, 0, 255)

 circle(i, height - i, 5)

 }

}

i += 10 Adding 10 each iteration of the for loop, this increases the
value of i by 10

AI module A unit #2 of 8 45 www.elegantai.org

http://www.elegantai.org

AI module A unit #2 of 9 45 www.elegantai.org

Figure A2.2

http://www.elegantai.org

We want to draw 30 circles, one on top of the other. Hence, we introduce
a constant (const) variable called number. In the next part, we will
spread those 30 circles randomly around the line with some variance
(spread).

🗒 Notes

Now we are drawing 30 circles for each data point. We use j as the
variable for the nested loop.

Sketch A2.2 initial sketch with data points

const number = 30

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 for (let i = 0; i < width; i += 10)

 {

 for (let j = 0; j < number; j++)

 {

 fill(0, 0, 255)

 circle(i, height - i, 5)

 }

 }

}

AI module A unit #2 of 10 45 www.elegantai.org

http://www.elegantai.org

Now we are going to spread the data points using the variable spread.
You will notice that it draws the circles repeatedly in random points.

🗒 Notes

We don’t want the circles being drawn continuously; we will address the
issue in the next sketch.

Sketch A2.3 sketch revised

const number = 30

const spread = 30

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 for (let i = 0; i < width; i += 10)

 {

 for (let j = 0; j < number; j++)

 {

 fill(0, 0, 255)

 circle(i + random(-spread, spread), height - i + random(-
spread, spread), 5)

 }

 }

}

AI module A unit #2 of 11 45 www.elegantai.org

http://www.elegantai.org

🛠 Code Explanation

random(-spread, spread) Gives us a random value between -30 and +30

i + random(-spread, spread) This means that for every i (x) value we move it
above or below the real value.

AI module A unit #2 of 12 45 www.elegantai.org

http://www.elegantai.org

To stop it looping through, we change the name of the draw() function to
trainingData(). This means it is no longer a continuous loop. We move
background(220) into the setup() function and call the
trainingData() function there. Now it draws the data points just once
every time you run the sketch, but not continually as before.

Sketch A2.4 revising the data

const number = 30

const spread = 30

function setup()

{

 createCanvas(400, 400)

 background(220)

 trainingData()

}

function trainingData()

{

 // background(220)

 for (let i = 0; i < width; i += 10)

 {

 for (let j = 0; j < number; j++)

 {

 fill(0, 0, 255)

 circle(i + random(-spread, spread), height - i + random(-
spread, spread), 5)

 }

 }

}

AI module A unit #2 of 13 45 www.elegantai.org

http://www.elegantai.org

🗒 Notes

This may sound complicated, but it is just a little bit of refactoring. The
training data is called just once in setup(). This will become evident later
as we don’t want to be creating new data as we train.

❗ Remove the background(220) from the trainingData() function.

AI module A unit #2 of 14 45 www.elegantai.org

http://www.elegantai.org

AI module A unit #2 of 15 45 www.elegantai.org

Figure A2.4

http://www.elegantai.org

We are going to call our neural network nn. This may not sound very
creative, but it makes sense. We then call the ml5.js library, and
specifically, we are using the neural network. This is because we are
building our own model rather than a pre-trained one.

Sketch A2.5 adding the model

let nn

const number = 30

const spread = 30

function setup()

{

 createCanvas(400, 400)

 background(220)

 nn = ml5.neuralNetwork()

 trainingData()

}

function trainingData()

{

 background(220)

 for (let i = 0; i < width; i += 10)

 {

 for (let j = 0; j < number; j++)

 {

 fill(0, 0, 255)

 circle(i + random(-spread, spread), height - i + random(-
spread, spread), 5)

 }

 }

}

AI module A unit #2 of 16 45 www.elegantai.org

http://www.elegantai.org

🗒 Notes

Nothing is meant to happen; all we have done is call the neural network
library ml5.js. This is why we need it in the index.html file.

🛠 Code Explanation

let nn Naming the neural network model

nn = ml5.neuralNetwork() Calling or assigning the ml5 neural network to the
nn model name

AI module A unit #2 of 17 45 www.elegantai.org

http://www.elegantai.org

We have initialised the model and now we have to give it some options.
This is information the model needs. First off, we have to decide what kind
of task we want it to do; in this case, it is a regression task because
we want it to output a value y that varies based on the x input.

The second option is something called debug: what this does is draw the
loss as a graph/chart so we can see the loss values visually. You don’t have
to use this, but it is handy to see what progress the model is making as it
is training. To see the graph, you set debug: true; alternatively, set it to
false.

We have the options object as a const so that we don’t change any of
the parameters. We then call the options inside ml5. As mentioned in the
introduction, we have added webgl to the backend to help with the
training process.

Sketch A2.5 adding the model

let nn

const number = 30

const spread = 30

const options = {

 task: 'regression',

 debug: true

}

function setup()

{

 createCanvas(400, 400)

 background(220)

 ml5.setBackend("webgl")

 nn = ml5.neuralNetwork(options)

 trainingData()

}

AI module A unit #2 of 18 45 www.elegantai.org

http://www.elegantai.org

🗒 Notes

Adding this code won’t make any difference yet. If you get any errors,
make sure you have typed everything in correctly and also that you have
the ml5.js line of code in the index.html correctly written.

🌻 Challenge

If your machine will accept it, then try: ml5.setBackend("cpu") for
faster training.

🛠 Code Explanation

function trainingData()

{

 background(220)

 for (let i = 0; i < width; i += 10)

 {

 for (let j = 0; j < number; j++)

 {

 fill(0, 0, 255)

 circle(i + random(-spread, spread), height - i + random(-
spread, spread), 5)

 }

 }

}

const options This creates an object of options we can
use with ml5.js

ml5.setBackend("webgl") Using the rendering that is most
appropriate

nn = ml5.neuralNetwork(options) Adding the options to the neural network

AI module A unit #2 of 19 45 www.elegantai.org

http://www.elegantai.org

What the model needs is the data; therefore, we need to change a number
of things. We need to collect all those data points into the data variable.
So the variable data now cycles through all the x and y values. The data
is now an array of those x and y values. We then draw the circle to the
data.x, which is data[0], and data.y is data[1].

Sketch A2.6 adding the data

let nn

let data

const number = 30

const spread = 30

const options = {

 task: 'regression',

 debug: true

}

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 nn = ml5.neuralNetwork(options)

 trainingData()

}

function trainingData()

{

 background(220)

 for (let i = 0; i < width; i += 10)

 {

 for (let j = 0; j < number; j++)

 {

 data = [i + floor(random(-spread, spread)), height - i +
floor(random(-spread, spread))]

AI module A unit #2 of 20 45 www.elegantai.org

http://www.elegantai.org

🗒 Notes

We still draw the data points as before, but the code is looking quite
different now. Try to follow what the code is doing.

🛠 Code Explanation

 fill(0, 0, 255)

 circle(data[0], data[1], 5)

 }

 }

}

i + floor(random(-spread, spread)) We use floor so that we get whole
numbers (integers) not floats.

circle(data[0], data[1], 5) The circle data[0] is the x value, the
data[1] the y value.

AI module A unit #2 of 21 45 www.elegantai.org

http://www.elegantai.org

We are going to add this data to the neural network. To do this, we use
the addData() function. After the data has been added, we need to
normalise the data with the normalizeData() function. This transforms
the data to between -1 and +1. The console.log() will let us know
when that has been completed.

Sketch A2.6 adding the data

let nn

let data

const number = 30

const spread = 30

const options = {

 task: 'regression',

 debug: true

}

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 nn = ml5.neuralNetwork(options)

 trainingData()

 nn.normalizeData()

 console.log('done')

}

function trainingData()

{

 background(220)

 for (let i = 0; i < width; i += 10)

 {

 for (let j = 0; j < number; j++)

 {
AI module A unit #2 of 22 45 www.elegantai.org

http://www.elegantai.org

🗒 Notes

We have passed the data into the model; next, we need to train the model
on that data.

🛠 Code Explanation

 data = [i + floor(random(-spread, spread)), height - i +
floor(random(-spread, spread))]

 fill(0, 0, 255)

 circle(data[0], data[1], 5)

 nn.addData([data[0]], [data[1]])

 }

 }

}

nn.normalizeData() This normalises the data

console.log('done') Let us know when it is all done

nn.addData([data[0]], [data[1]]) This adds the data to the nn model

AI module A unit #2 of 23 45 www.elegantai.org

http://www.elegantai.org

AI module A unit #2 of 24 45 www.elegantai.org

Figure A2.6

http://www.elegantai.org

To train the model, we use the train() function. We are going to train
the model on the data we have normalised. We add a callback function in
the train() function called finishedTraining() so that when the
training is complete, it will let us know. Here, the loss graph kicks into
action, and you will notice that it stops training after about ten epochs.

Sketch A2.7 training on the data

let nn

let data

const number = 30

const spread = 30

const options = {

 task: 'regression',

 debug: true

}

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 nn = ml5.neuralNetwork(options)

 trainingData()

 nn.normalizeData()

 nn.train(finishedTraining)

 console.log('done')

}

function trainingData()

{

 background(220)

 for (let i = 0; i < width; i += 10)

 {

 for (let j = 0; j < number; j++)
AI module A unit #2 of 25 45 www.elegantai.org

http://www.elegantai.org

🗒 Notes

When the loss graph has finished, you can remove it by clicking on the
Hide button, so that you can see the canvas (if your screen is small). In
the console, we get done and finished after the training is completed.
The default settings are for 10 epochs, and there are 16 nodes (neurons) in
the hidden layer. It automatically works out the number of nodes for the
input and output. Notice it makes reference to Dense 1 and Dense 2. This is
the hidden layer and the output layer. The input layer is not considered a
layer. Dense means fully connected.

🛠 Code Explanation

 {

 data = [i + floor(random(-spread, spread)), height - i +
floor(random(-spread, spread))]

 fill(0, 0, 255)

 noStroke()

 circle(data[0], data[1], 5)

 nn.addData([data[0]], [data[1]])

 }

 }

}

function finishedTraining()

{

 console.log('finished')

}

nn.train(finishedTraining) Trains the model and when finished calls
the function finishedTraining()

AI module A unit #2 of 26 45 www.elegantai.org

http://www.elegantai.org

AI module A unit #2 of 27 45 www.elegantai.org

Figure A2.7

http://www.elegantai.org

We need to predict the result after the training is complete. We do this
using the predict() function. This will be very telling as it is going to
draw an approximation of the data. In theory, it should be a straight line
where y = x drawn from the bottom left corner to the top right corner
on the canvas, but we will see.

❗ Remove the console.log()s, they were there just to check it
worked. We will set debug: to false so you can see the line being drawn
(better still, just remove it completely).

In the finishedTraining() function, we use the counter as an array;
this is the x value. The callback function gotResults() will draw the
predicted result for y for each x input. We only want 400 because that is
the number of pixels in the width of the canvas.

Sketch A2.8 predicting the result

let nn

let counter = 0

let data

const number = 30

const spread = 30

const options = {

 task: 'regression',

 debug: false

}

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 nn = ml5.neuralNetwork(options)

 trainingData()

 nn.normalizeData()

 nn.train(finishedTraining)

AI module A unit #2 of 28 45 www.elegantai.org

http://www.elegantai.org

🗒 Notes

If you run this, you will get an error message because we haven’t created
the gotResults() function just yet. We will need to advance the
counter in the gotResults() function by one on each iteration (see next
sketch).

}

function trainingData()

{

 background(220)

 for (let i = 0; i < width; i += 10)

 {

 for (let j = 0; j < number; j++)

 {

 data = [i + floor(random(-spread, spread)), height - i +
floor(random(-spread, spread))]

 fill(0, 0, 255)

 noStroke()

 circle(data[0], data[1], 5)

 nn.addData([data[0]], [data[1]])

 }

 }

}

function finishedTraining()

{

 if (counter < 400)

 {

 nn.predict([counter], gotResults)

 }

}

AI module A unit #2 of 29 45 www.elegantai.org

http://www.elegantai.org

🛠 Code Explanation

nn.predict([counter], gotResults)
This takes the x value (counter),
predicts the result and passes to the
callback function gotResults()

AI module A unit #2 of 30 45 www.elegantai.org

http://www.elegantai.org

Next, we add the gotResults() callback function. The prediction is the
first element in the array, which will be a value of y for a particular input
of x (from the counter). We draw a point at that value and move onto
the next. We add one to the counter and return to the
finishedTraining() function for the next prediction.

Sketch A2.9 the callback function

let nn

let counter = 0

let data

const number = 30

const spread = 30

const options = {

 task: 'regression',

 debug: false

}

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 nn = ml5.neuralNetwork(options)

 trainingData()

 nn.normalizeData()

 nn.train(finishedTraining)

}

function trainingData()

{

 background(220)

 for (let i = 0; i < width; i += 10)

 {

 for (let j = 0; j < number; j++)
AI module A unit #2 of 31 45 www.elegantai.org

http://www.elegantai.org

 {

 data = [i + floor(random(-spread, spread)), height - i +
floor(random(-spread, spread))]

 fill(0, 0, 255)

 noStroke()

 circle(data[0], data[1], 5)

 nn.addData([data[0]], [data[1]])

 }

 }

}

function finishedTraining()

{

 if (counter < 400)

 {

 nn.predict([counter], gotResults)

 }

}

function gotResults(results)

{

 let prediction = results[0]

 let x = counter

 let y = prediction.value

 stroke(255, 0, 0)

 strokeWeight(5)

 point(x, y)

 counter++

 finishedTraining()

}

AI module A unit #2 of 32 45 www.elegantai.org

http://www.elegantai.org

🗒 Notes

The results is an argument that is an array of objects, actually one
object at a time, for each x (counter) value. What you may get is a
wonky line at the start and finish. This is most likely because we have
some negative values when we create the variance of the data points.

🌻 Challenges

1. Use console.log(results) to see what it is returning (see second image

below)

2. We could fill an array with values and work through each element one

at a time

🛠 Code Explanation

let prediction = results[0] The prediction variable takes all the data in the

first object in the results

let x = counter Gives the counter value to the x co-ordinate of
the line

let y = prediction.value This takes the value part of the object
element. This is the actual y value

counter++ Adding one to the counter

finishedTraining()
Then finally return to the finishedTraining()
function to get the next value based on the
next counter (x) value

AI module A unit #2 of 33 45 www.elegantai.org

http://www.elegantai.org

AI module A unit #2 of 34 45 www.elegantai.org

Figure A2.9a

http://www.elegantai.org

AI module A unit #2 of 35 45 www.elegantai.org

Figure A2.9b with console.log(results) and

the value is the actual predicted value for the canvas

http://www.elegantai.org

The batch size is how much data we send through in one go. We could
send it through one at a time or all of it in one go. A large batch size
is usually faster but potentially less accurate. Whereas a smaller batch
size takes longer but may give overall better results. We are going to
give the train() function some options, which is where we specify the
batch size. Our dataset is around 2400 data points, but first we will
try a batch size of 1 and see what happens.

Sketch A2.10 batch size

let nn

let counter = 0

let data

const number = 30

const spread = 30

const options = {

 task: 'regression',

 debug: true

}

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 nn = ml5.neuralNetwork(options)

 trainingData()

 nn.normalizeData()

 const trainingOptions = {

 batchSize: 1

 }

 nn.train(trainingOptions, finishedTraining)

}

function trainingData()

AI module A unit #2 of 36 45 www.elegantai.org

http://www.elegantai.org

{

 background(220)

 for (let i = 0; i < width; i += 10)

 {

 for (let j = 0; j < number; j++)

 {

 data = [i + floor(random(-spread, spread)), height - i +
floor(random(-spread, spread))]

 fill(0, 0, 255)

 noStroke()

 circle(data[0], data[1], 5)

 nn.addData([data[0]], [data[1]])

 }

 }

}

function finishedTraining()

{

 if (counter < 400)

 {

 nn.predict([counter], gotResults)

 }

}

function gotResults(results)

{

 let prediction = results[0]

 let x = counter

 let y = prediction.value

 stroke(255, 0, 0)

 strokeWeight(5)

 point(x, y)

 counter++

AI module A unit #2 of 37 45 www.elegantai.org

http://www.elegantai.org

🗒 Notes

The results speak for themselves. We need to consider a larger
batchSize than 1. We could go to the other extreme (all the dataset)
and see what happens then.

🌻 Challenge

Try other values of batch size

🛠 Code Explanation

 finishedTraining()

}

const trainingOptions = { Create a permanent object for our training
options

batchSize: 1 Specify the batch size

nn.train(trainingOptions,
finishedTraining)

Add the training options to the train()
function

AI module A unit #2 of 38 45 www.elegantai.org

http://www.elegantai.org

AI module A unit #2 of 39 45 www.elegantai.org

Figure A2.10a Our loss chart looks woeful

http://www.elegantai.org

AI module A unit #2 of 40 45 www.elegantai.org

Figure A2.10b the results look woeful also

http://www.elegantai.org

Batch sizes are often in the order 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and
so on. You can have any batch size you want, though. You often notice the
difference instantly.

❗ Keep this code for the next unit

Sketch A2.11 increasing the batch size

let nn

let counter = 0

let data

const number = 30

const spread = 30

const options = {

 task: 'regression',

 debug: true

}

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 nn = ml5.neuralNetwork(options)

 trainingData()

 nn.normalizeData()

 const trainingOptions = {

 batchSize: 512

 }

 nn.train(trainingOptions, finishedTraining)

}

function trainingData()

{

 background(220)

AI module A unit #2 of 41 45 www.elegantai.org

http://www.elegantai.org

 for (let i = 0; i < width; i += 10)

 {

 for (let j = 0; j < number; j++)

 {

 data = [i + floor(random(-spread, spread)), height - i +
floor(random(-spread, spread))]

 fill(0, 0, 255)

 noStroke()

 circle(data[0], data[1], 5)

 nn.addData([data[0]], [data[1]])

 }

 }

}

function finishedTraining()

{

 if (counter < 400)

 {

 nn.predict([counter], gotResults)

 }

}

function gotResults(results)

{

 let prediction = results[0]

 let x = counter

 let y = prediction.value

 stroke(255, 0, 0)

 strokeWeight(5)

 point(x, y)

 counter++

 finishedTraining()

}

AI module A unit #2 of 42 45 www.elegantai.org

http://www.elegantai.org

🗒 Notes

We get a better loss curve and better results, still a bit skewed at the
ends. The results are far more consistent.

❗ Remember to keep this code for module A unit #3 sine wave
regression

🌻 Challenge

Try other batch sizes

AI module A unit #2 of 43 45 www.elegantai.org

http://www.elegantai.org

AI module A unit #2 of 44 45 www.elegantai.org

Figure A2.11a loss much better

http://www.elegantai.org

AI module A unit #2 of 45 45 www.elegantai.org

Figure A2.11b and better results

http://www.elegantai.org

