
Artificial
Intelligence

Module C

Unit #1

p5.js code
snippets 4

Module C Unit #2 code snippets part 4

Introduction code snippets 4

Introduction to perlin noise

Sketch C1.1 starting with a standard sketch

Sketch C1.2 randomly moving circle

Sketch C1.3 smooth random movement

It is all about functions, objects and classes

Sketch C1.4 starting sketch

Sketch C1.5 a single car

Sketch C1.6 moving the car

Sketch C1.7 a single car

The car as a function

Sketch C1.8 function single car

Sketch C1.9 function single car

Sketch C1.10 car as an object

Sketch C1.11 alternative car object

Introduction to classes

Sketch C1.12 the constructor function

Sketch C1.13 the show function

Sketch C1.14 the move function

Sketch C1.15 creating a car

Sketch C1.16 to see it and move it

The power of classes

Sketch C1.17 car attributes

Sketch C1.18 a second car

Sketch C1.19 lots and lots of cars

Seeking a target using classes

Adding files

Sketch C1.20 index.html

Sketch C1.21 new sketch with a target

Sketch C1.22 the Vehicle class

Sketch C1.23 a vehicle design

Sketch C1.24 a starting position

Movement with vectors

Sketch C1.25 velocity and acceleration

Sketch C1.26 adding acc, vel and pos

Content

AI module C unit #1 of 2 96 www.elegantAI.org

http://www.elegantAI.org

Sketch C1.27 applying a force

Sketch C1.28 seeking the target

Sketch C1.29 seek, move and show

Sketch C1.30 reset acceleration

Sketch C1.31 steering

Sketch C1.32 rotate to the heading

Sketch C1.33 getting it working

Sketch C1.34 the maximum force

Sketch C1.35 the force is now steering

AI module C unit #1 of 3 96 www.elegantAI.org

http://www.elegantAI.org

This is a more challenging coding snippet than the first three versions. We
are going to cover some concepts which aren’t neat little snippets but,
rather, large chunks of code. The first section is about Perlin noise, which
is a form of random number generation. It is less erratic; it is still random,
but it is random in relation to the previous value, whereas using the
random() function just generates a number with no regard to the
previous number generated.

The second section looks at a number of things in the context of a moving
vehicle. The main concept here is the introduction to classes. Using classes
is a way of creating a template that we can use over and over again with
variations. I will introduce an example where we will add files and code
how a vehicle would seek a moving target.

Introduction to coding snippets part 4

AI module C unit #1 of 4 96 www.elegantAI.org

http://www.elegantAI.org

Perlin noise() returns a random value between 0.0 and 1.0 at a
specific time. You specify the start time. It is then incremented along this
smooth random time line in steps; the smaller the steps (for instance,
0.005) means there are very small changes but smoother, whereas larger
steps (0.03) obviously create a much greater degree of randomness and
possibly less smooth. It seems to work best between 0.005 and 0.03.

If this seems strange, then don’t let it be. If you have two variables that
you want to have a different random outcome, you simply grab the
noise() starting at different times, for example, 3 or 100, etc.

The beauty of this is that it is random but it bears some relationship with
the previous random number at a particular point in time. So if you move it
on a small increment, you get a slight adjustment to the random value.

If you really want to understand how it works and who invented it (and
why!), then I suggest you read up about it in Dan Shiffman’s book/website
Nature of Code or look at Algorithmic Art module A unit #1
and #2 see under the resources tab (elegantAI.org).

Introduction to perlin noise

AI module C unit #1 of 5 96 www.elegantAI.org

Figure 1: perlin noise graph

http://elegantAI.org
http://www.elegantAI.org

Starting with our normal basic sketch.

Sketch C1.1 starting with a standard sketch

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

}

AI module C unit #1 of 6 96 www.elegantAI.org

http://www.elegantAI.org

We start the circle in the centre of the canvas and randomly move it. We
are just going to use the random() function to move the circle around
the canvas. You will notice that it is not very smooth or fluid; noise will
give you something more natural.

🌻 Challenges

1. Try random values of (5, -5).

2. Try different values for x and for y.

🛠 Code Explanation

Sketch C1.2 randomly moving circle

let x = 200

let y = 200

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 circle(x, y, 100)

 x = x + random(-2, 2)

 y = y + random(-2, 2)

}

x = x + random(-2, 2) Add a random value between -2 and 2 to the x value
on each iteration

y = y + random(-2, 2) Add a random value between -2 and 2 to the y value
on each iteration

AI module C unit #1 of 7 96 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #1 of 8 96 www.elegantAI.org

Figure C1.2

http://www.elegantAI.org

We have replaced the random() function with the noise() function.
Notice that the jerkiness has gone, replaced by a much smoother
movement, almost as if floating in the air. Also, it looks a lot more
complicated. We have two start times (3 and 10). Because noise returns
values between 0 and 1, we use map() to scale the movement up to the
width and height of the canvas. Then, on each iteration, we move along
the time line by 0.005.

🗒 Notes

To see how noise works and why it is so much better than just random(),
this short programme illustrates the smoothness of the movement.

Sketch C1.3 smooth random movement

let timeX = 3

let timeY = 10

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 let x = map(noise(timeX), 0, 1, 0, width)

 let y = map(noise(timeY), 0, 1, 0, height)

 circle(x, y, 100)

 timeX = timeX + 0.005

 timeY = timeY + 0.005

}

AI module C unit #1 of 9 96 www.elegantAI.org

http://www.elegantAI.org

🌻 Challenges

1. Try different increments for timeX and timeY.

2. What happens if you give them both the same start on the timeline?

3. Try: timeX = timeX + 0.05.

4. Replace it with timeX += 0.005.

🛠 Code Explanation

let timeX = 3 The starting value for the x timeline

let timeY = 10 The starting value for the y timeline

let x = map(noise(timeX), 0, 1,
0, width)

Maps the timeX value to the width of
the canvas

let y = map(noise(timeY), 0, 1,
0, height)

Maps the timeY value to the height of
the canvas

timeX = timeX + 0.005 Adds an increment to the timeX timeline

timeY = timeY + 0.005 Adds an increment to the timeY timeline

AI module C unit #1 of 10 96 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #1 of 11 96 www.elegantAI.org

Figure C1.3

http://www.elegantAI.org

This next section looks at coding with functions, objects, and classes. They
demonstrate the different ways you can code the same effect using
different approaches. The context we will use is of a vehicle or vehicles
moving either across the canvas or around it.

We can describe the vehicle with a show() function and its movement
with a move() function. These are simple examples to highlight the
differences to give you a flavour of what that might look like.

It is all about functions, objects and classes

AI module C unit #1 of 12 96 www.elegantAI.org

http://www.elegantAI.org

❗ We start a new sketch, as usual.

Sketch C1.4 starting sketch

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

}

AI module C unit #1 of 13 96 www.elegantAI.org

http://www.elegantAI.org

We create our car as a simple rectangle, starting at the left-hand edge of
the canvas.

Sketch C1.5 a single car

let x = 0

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 rect(x, 100, 50, 30)

}

AI module C unit #1 of 14 96 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #1 of 15 96 www.elegantAI.org

Figure C1.5

http://www.elegantAI.org

Now we start the car moving across the canvas.

🗒 Notes

It moves slowly across the canvas and disappears off the right-hand edge
of the canvas, never to be seen again.

🌻 Challenge

Make it move faster.

🛠 Code Explanation

Sketch C1.6 moving the car

let x = 0

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 rect(x, 100, 50, 30)

 x += 1

}

x += 1 This adds 1 to x on each iteration

AI module C unit #1 of 16 96 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #1 of 17 96 www.elegantAI.org

Figure C1.6

http://www.elegantAI.org

The car now reappears on the left-hand edge, and off it goes again.

🗒 Notes

We have x as -50, so it looks like it is seamlessly continuous.

🛠 Code Explanation

Sketch C1.7 a single car

let x = 0

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 rect(x, 100, 50, 30)

 x += 1

 if (x > width)

 {

 x = -50

 }

}

if (x > width) Checks to see if it has reached the edge of the canvas

x = -50 Returns the x value to -50 if the car has gone off the
edge of the canvas

AI module C unit #1 of 18 96 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #1 of 19 96 www.elegantAI.org

Figure C1.7

http://www.elegantAI.org

We can express the same thing as before, but this time we use functions,
two of them to describe the car and to describe the motion. This means
we have the setup() function as before, we keep the draw() function
(empty for now) and add the other two functions called show() and
move(), putting a lot of the stuff in those new functions.

I am using a very simple example here, but bear with me as we will build
on this concept when we introduce classes later.

The car as a function

AI module C unit #1 of 20 96 www.elegantAI.org

http://www.elegantAI.org

We have moved the code that was in the draw() function and split it
between the two new functions: show() and move(). We have used the
same code as in the previous sketch, just moved it around.

Sketch C1.8 function single car

let x = 0

function setup()

{

 createCanvas(440, 400)

}

function draw()

{

 // empty line of code

}

function show()

{

 background(220)

 rect(x, 100, 50, 30)

}

function move()

{

 x += 1

 if (x > width)

 {

 x = -50

 }

}

AI module C unit #1 of 21 96 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

You will notice that nothing happens; there isn’t even a canvas. You can
just cut and paste to save time.

AI module C unit #1 of 22 96 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #1 of 23 96 www.elegantAI.org

Figure C1.8

http://www.elegantAI.org

To get the two new functions to do anything, we need to call them from
inside the draw() function, and we do it as shown below.

Sketch C1.9 function single car

let x = 0

function setup()

{

 createCanvas(440, 400)

}

function draw()

{

 show()

 move()

}

function show()

{

 background(220)

 rect(x, 100, 50, 30)

}

function move()

{

 x += 1

 if (x > width)

 {

 x = -50

 }

}

AI module C unit #1 of 24 96 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Now we are back where we started, but let’s not stop there; there is yet
another way we can do this even before we introduce classes.

AI module C unit #1 of 25 96 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #1 of 26 96 www.elegantAI.org

Figure C1.9

http://www.elegantAI.org

This exercise is another way of doing the same thing. I include it because
it shows the concept of objects in relation to functions. We could easily
create two cars, but it would mean doubling all the code for each car. This
is another reason where classes come into their own, but we are getting
ahead of ourselves here.

The car as an object using functions

AI module C unit #1 of 27 96 www.elegantAI.org

http://www.elegantAI.org

❗ Start a new sketch (highlighted differences to basic sketch).

We have added the car as an object; notice the similarity to our earlier
sketch, but now we have to give it a name.

🗒 Notes

Everything behaves just as before.

🌻 Challenges

1. Give it a y component.

2. Use the show() and move() functions (if struggling, see next sketch).

Sketch C1.10 car as an object

let car = {x: 0}

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 rect(car.x, 100, 50, 30)

 car.x += 1

 if (car.x > width)

 {

 car.x = -50

 }

}

AI module C unit #1 of 28 96 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

let car = {x: 0} We initialise the x component of the car object to 0

rect(car.x, 100, 50, 30) The x component of the car object

car.x += 1 Incrementing the x component by 1 on each
iteration

if (car.x > width) Check when the car has gone off the edge of the
canvas

car.x = -50 The x component is re-initialised to -50

AI module C unit #1 of 29 96 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #1 of 30 96 www.elegantAI.org

Figure C1.10

http://www.elegantAI.org

Now we can use the functions show() and move() as well as introducing
a y component. The background can go into draw() or show().

Sketch C1.11 alternative car object

let car = {x: 0, y: 100}

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 show()

 move()

}

function show()

{

 rect(car.x, car.y, 50, 30)

}

function move()

{

 car.x += 1

 if (car.x > width)

 {

 car.x = -50

 }

}

AI module C unit #1 of 31 96 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Looks quite elegant in my opinion. It should be exactly the same as before.

🛠 Code Explanation

let car = {x: 0, y: 100} Adding the y component to the car

object

rect(car.x, car.y, 50, 30) Adding the y component to the rectangle
drawn.

AI module C unit #1 of 32 96 www.elegantAI.org

http://www.elegantAI.org

Using classes is a common way for coders to organise their code. It is not
essential, as you could do the same thing without using classes, but it is a
very powerful and useful approach and one worth investing the time
understanding.

It does take a bit of getting used to. I will try to illustrate this with a
simple example. Imagine you have a template to build a car. You, as a
consumer, want some choice. The colour, the number of doors, engine size,
interior style, and so on. A class is like the basic template. When you order
a new car, they don’t ask if you want doors, seats, a steering wheel,
windows, etc. They come as standard.

A class will have the basics and the options. So that when they make
10,000 cars, they can all be slightly different depending on what the
customer wants. This is a very limited comparison, but you will see that
you can create lots of ‘cars’ that all behave slightly differently. In our first
example, we will do just that with a sort of car.

In the diagram below (figure 2), you will see that the class is given a
name; it is usual to start the class name with a capital letter. Also, there
are three functions in the example below. You can have as many functions
as you like and can call them anything you like.

The first function I use is called the constructor() function. This is
just the usual name given to it. This is where we hold the information
about any car we are going to build. Because it is a sort of template
where we can make as many cars as we want, we prefix any variable with
the word this; for instance, the colour would be this.colour, or the
starting position will be this.x and this.y and so on.

The basic structure of the main sketch is demonstrated in figure 3.
Where you create the car or cars from the class and call the functions
within the class.

Introduction to classes

AI module C unit #1 of 33 96 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #1 of 34 96 www.elegantAI.org

Figure 2: in the class

http://www.elegantAI.org

AI module C unit #1 of 35 96 www.elegantAI.org

Figure 3: in the main sketch

http://www.elegantAI.org

❗ New Sketch

We start with our basic sketch and create a class called Car. In that class,
we have a constructor() function. This function has four elements that
give us details about the car, its colour, its x position, its y position, and
its velocity. This first example will not reveal the power of using classes
but a very gentle introduction to creating a class.

🗒 Notes

When we give attributes to an object in a class, we always use this.
before the attribute. There is nothing to see at this point.

Sketch C1.12 the constructor function

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

}

class Car

{

 constructor()

 {

 this.colour = 255

 this.x = 0

 this.y = 100

 this.velocity = 1

 }

}

AI module C unit #1 of 36 96 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

this.colour = 255 For a car we define its colour

this.x = 0 For a car we define its x position

this.y = 100 For a car we define its y position

this.velocity = 1 For a car we define its velocity

AI module C unit #1 of 37 96 www.elegantAI.org

http://www.elegantAI.org

In the show() function, we will describe what the car will look like.

Sketch C1.13 the show function

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

}

class Car

{

 constructor()

 {

 this.colour = 255

 this.x = 0

 this.y = 100

 this.velocity = 1

 }

 show()

 {

 fill(this.colour)

 rect(this.x, this.y, 50, 30)

 }

}

AI module C unit #1 of 38 96 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

It pulls the information from the constructor() function. Still nothing
to see yet.

🛠 Code Explanation

fill(this.colour) This will fill it with white (255)

rect(this.x, this.y, 50, 30) Creates a rectangle rect(0, 100, 50, 30)

AI module C unit #1 of 39 96 www.elegantAI.org

http://www.elegantAI.org

Next, we describe how the car is going to move with the move() function
inside the Car class.

Sketch C1.14 the move function

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

}

class Car

{

 constructor()

 {

 this.colour = 255

 this.x = 0

 this.y = 100

 this.velocity = 1

 }

 show()

 {

 fill(this.colour)

 rect(this.x, this.y, 50, 30)

 }

 move()

AI module C unit #1 of 40 96 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

This is exactly the same as with the previous examples of a moving car.
However, we created a variable for the velocity rather than just having
a value (1). This allows us to alter it later. As before, still nothing to see.

🛠 Code Explanation

 {

 this.x += this.velocity

 if (this.x > width)

 {

 this.x = -50

 }

 }

}

this.x += this.velocity For each car we add the velocity

if (this.x > width) If a car reaches the edge of the canvas

this.x = -50 Return that car back to the lefthand edge

AI module C unit #1 of 41 96 www.elegantAI.org

http://www.elegantAI.org

To create a Car, we first give this car a name. Then, in setup(), we
create a new Car from the class as a template. We currently have fixed
values such as colour, x, y, and velocity.

Sketch C1.15 creating a car

let car

function setup()

{

 createCanvas(400, 400)

 car = new Car()

}

function draw()

{

 background(220)

}

class Car

{

 constructor()

 {

 this.colour = 255

 this.x = 0

 this.y = 100

 this.velocity = 1

 }

 show()

 {

 fill(this.colour)

AI module C unit #1 of 42 96 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Be aware that the variable name for the car is a lowercase c and the
name of the class is an uppercase C. They both have the same name,
which I admit is a little confusing, but they are totally separate entities.
One is a variable name, the other is a class name. Still, nothing to see
here.

🛠 Code Explanation

 rect(this.x, this.y, 50, 30)

 }

 move()

 {

 this.x += this.velocity

 if (this.x > width)

 {

 this.x = -50

 }

 }

}

car = new Car() Creates a new car

AI module C unit #1 of 43 96 www.elegantAI.org

http://www.elegantAI.org

In order to see the car, we have to call the show() function, and to move
the car, we have to call the move() function, both in the draw()
function. We ascribe these two functions to the new car we have created,
called car.

Sketch C1.16 to see it and move it

let car

function setup()

{

 createCanvas(400, 400)

 car = new Car()

}

function draw()

{

 background(220)

 car.show()

 car.move()

}

class Car

{

 constructor()

 {

 this.colour = 255

 this.x = 0

 this.y = 100

 this.velocity = 1

 }

AI module C unit #1 of 44 96 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Finally, we get to see the car and watch it move.

🌻 Challenges

1. Change the colour.

2. Change the x value.

3. Change the y value.

4. Change the velocity.

5. Change the name of the variable to myCar.

6. Change the name of the class.

7. Change the name of the constructor(), show(), and move()

functions.

🛠 Code Explanation

 show()

 {

 fill(this.colour)

 rect(this.x, this.y, 50, 30)

 }

 move()

 {

 this.x += this.velocity

 if (this.x > width)

 {

 this.x = -50

 }

 }

}

car.show() For this car we show it according to the show() function

car.move() For this car we move it according to the move() function

AI module C unit #1 of 45 96 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #1 of 46 96 www.elegantAI.org

Figure C1.16

http://www.elegantAI.org

In the following sections, we will consider what we can do with classes
which makes all the trouble of creating them worthwhile. This is evident
when we want hundreds of them, where each one can be created
separately and independently.

The power of classes

AI module C unit #1 of 47 96 www.elegantAI.org

http://www.elegantAI.org

When we create the car, we can specify its attributes rather than hard-
code them in the constructor() function. We have to give the car the
same values as before. They become the arguments in the
constructor() function: colour, x, y, and velocity. This is more like
a template where you can now specify what you want.

Sketch C1.17 car attributes

let car

function setup()

{

 createCanvas(400, 400)

 car = new Car(255, 0, 100, 1)

}

function draw()

{

 background(220)

 car.show()

 car.move()

}

class Car

{

 constructor(colour, x, y, velocity)

 {

 this.colour = colour

 this.x = x

 this.y = y

 this.velocity = velocity

 }

AI module C unit #1 of 48 96 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

The result is exactly the same as before because we have specified the
same features for our car. The beauty of this is that we can create a
second (or more) car with different features.

🌻 Challenge

Change the values/features of the car

🛠 Code Explanation

 show()

 {

 fill(this.colour)

 rect(this.x, this.y, 50, 30)

 }

 move()

 {

 this.x += this.velocity

 if (this.x > width)

 {

 this.x = -50

 }

 }

}

car = new Car(255, 0, 100, 1) We give this car some attributes

constructor(colour, x, y,
velocity)

The attributes are received as arguments
in the constructor() function

this.colour = colour This car has the colour argument

this.x = x This car has the x position argument

this.y = y This car has the y position argument

this.velocity = velocity This car has the velocity argument

AI module C unit #1 of 49 96 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #1 of 50 96 www.elegantAI.org

Figure C1.17

http://www.elegantAI.org

We added a second car and gave it different features.

Sketch C1.18 a second car

let car

let car2

function setup()

{

 createCanvas(400, 400)

 car = new Car(255, 0, 100, 1)

 car2 = new Car(55, 0, 300, 2)

}

function draw()

{

 background(220)

 car.show()

 car.move()

 car2.show()

 car2.move()

}

class Car

{

 constructor(colour, x, y, velocity)

 {

 this.colour = colour

 this.x = x

 this.y = y

 this.velocity = velocity

 }

AI module C unit #1 of 51 96 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

With just a few lines of code, we have created a second car. You can see
the simple logic.

🌻 Challenge

Add a third car.

 show()

 {

 fill(this.colour)

 rect(this.x, this.y, 50, 30)

 }

 move()

 {

 this.x += this.velocity

 if (this.x > width)

 {

 this.x = -50

 }

 }

}

AI module C unit #1 of 52 96 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #1 of 53 96 www.elegantAI.org

Figure C1.18

http://www.elegantAI.org

Here is a quick peek at what we could do with loops to draw lots of cars.
We have covered arrays and for() loops before. We create an array of
cars and cycle through them with random values for all the features
(except x). We then cycle through the array of cars, show and move them.
All this is done in the setup() and draw function; we don’t touch the Car
class!

Sketch C1.19 lots and lots of cars

let car = []

function setup()

{

 createCanvas(400, 400)

 for (let i = 0; i < 10; i++)

 {

 car[i] = new Car(random(255), 0, random(400), random(1, 5))

 }

}

function draw()

{

 background(220)

 for (let i = 0; i < car.length; i++)

 {

 car[i].show()

 car[i].move()

 }

}

class Car

{

 constructor(colour, x, y, velocity)

AI module C unit #1 of 54 96 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

I think that is pretty elegant!

🌻 Challenge

Just have a play.

 {

 this.colour = colour

 this.x = x

 this.y = y

 this.velocity = velocity

 }

 show()

 {

 fill(this.colour)

 rect(this.x, this.y, 50, 30)

 }

 move()

 {

 this.x += this.velocity

 if (this.x > width)

 {

 this.x = -50

 }

 }

}

AI module C unit #1 of 55 96 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #1 of 56 96 www.elegantAI.org

Figure C1.19

http://www.elegantAI.org

In this example, we are going to steer a vehicle towards a moving object
(your mouse). This is in preparation for the NeuroEvolution part of the AI
tutorial. At the same time, we will have a more detailed look at using
classes. For this, we will also add a file for the Vehicle class. This seemingly
simple idea is quite a challenge.

If a vehicle is travelling in a certain direction with a particular speed, how
does it steer towards a target so that it realistically changes direction
rather than simply stopping, turning, and moving? The vehicle is going to
seek the target and steer towards it.

The simple formula is described: steering = (desired velocity) - velocity.

Seeking a target using classes

AI module C unit #1 of 57 96 www.elegantAI.org

http://www.elegantAI.org

Before we go any further, we need to add a file called vehicle.js. I have
already described how to add a file in the introductory unit a quick
exploration of p5.js. If you are still unfamiliar, I suggest going
there quickly as a reminder and then returning here. In brief, you click on
the + sign next to Sketch Files, which gives you a drop-down menu,
and click on Create file. In the box, give it the name vehicle.js.
When you have done that, go to index.html and add in the line of code
<script src="vehicle.js"></script>. This last step is important;
otherwise, your sketch won’t know it is there. To access the vehicle.js
sketch, you click on it in the Sketch Files drop-down menu. You will be
flitting between that file and the main sketch.js file.

AI module C unit #1 of 58 96 www.elegantAI.org

Adding files

http://www.elegantAI.org

Step 1⃣

Creating a new file called vehicle.js, this is covered in a quick
exploration of p5.js. Make sure that the spelling and case are
correct (the index.html file is case-sensitive). You can call it anything you
like, but you must be consistent, however.

AI module C unit #1 of 59 96 www.elegantAI.org

Figure 4: creating a new file called vehicle.js

http://www.elegantAI.org

Step 2⃣

Referencing the file in the index.html file, you can simply copy and paste
the line of code for sketch.js and change it to vehicle.js. You need
to add it, otherwise the index.html file won’t know it is there and so it
remains invisible (it is easy to forget to do this bit after creating the file in
the first place, but you soon find out!).

AI module C unit #1 of 60 96 www.elegantAI.org

Figure 5: referencing the file in the index.html file

http://www.elegantAI.org

This is what the index.html file looks like now. This step is easy to
forget after creating it.

🗒 Notes

The spelling and case sensitivity are very important.

Sketch C1.20 index.html

index.html

<!DOCTYPE html>

<html lang="en">

 <head>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.10.0/p5.js"></script>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.10.0/addons/p5.sound.min.js"></script>

 <link rel="stylesheet" type="text/css" href="style.css">

 <meta charset="utf-8" />

 </head>

 <body>

 <main>

 </main>

 <script src="sketch.js"></script>

 <script src="vehicle.js"></script>

 </body>

</html>

AI module C unit #1 of 61 96 www.elegantAI.org

http://www.elegantAI.org

❗ New sketch in sketch.js (it’s based on our bog-standard sketch)

I will indicate whether we are in sketch.js or vehicle.js by
referencing it on the top line of the coding box. You will need to flit from
one to the other at times.

We create a target for our vehicle to seek; this is simply based on the
mouseX and mouseY object positions.

🗒 Notes

The circle (which we are calling the target) follows the movement of your
mouse.

🛠 Code Explanation

Sketch C1.21 new sketch with a target

sketch.js

let target

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 target = createVector(mouseX, mouseY)

 circle(target.x, target.y, 32)

}

target = createVector(mouseX,
mouseY)

We create a vector with two elements
the mouseX and the mouseY

circle(target.x, target.y, 32) We draw a circle to that vector, this is
our target

AI module C unit #1 of 62 96 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #1 of 63 96 www.elegantAI.org

Figure C1.21

http://www.elegantAI.org

❗ The vehicle.js sketch

Here we create our Vehicle class. Notice it has a capital letter for its
name. The constructor() function has two arguments, the x and y
position of the vehicle. Nothing in the show() and move() functions yet.

🗒 Notes

This is a gentle introduction; we will build it gradually. We have our
target (mouse) and the Vehicle class, but nothing much else.

Sketch C1.22 the Vehicle class

vehicle.js

class Vehicle

{

 constructor(x, y)

 {

 }

 move()

 {

 }

 show()

 {

 }

}

AI module C unit #1 of 64 96 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #1 of 65 96 www.elegantAI.org

Figure C1.22

http://www.elegantAI.org

We want a triangle to represent our vehicle. We use the triangle()
shape function to draw it. The dimensions of the triangle are based on a
length l (which is 16). We also create a vector for its position
(this.pos). Then we translate the triangle by the position; this is
because we have created a triangle based on the dimension of l and so
we move it to the position we want at x, y. This is necessary for when we
start to move the vehicle.

Sketch C1.23 a vehicle design

vehicle.js

class Vehicle

{

 constructor(x, y)

 {

 this.pos = createVector(x, y)

 this.l = 16

 }

 move()

 {

 }

 show()

 {

 translate(this.pos.x, this.pos.y)

 triangle(-this.l, -this.l/2, -this.l, this.l/2, this.l, 0)

 }

}

AI module C unit #1 of 66 96 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We still won’t see anything until we create the vehicle in the main sketch
(sketch.js), so let’s hop over there.

🌻 Challenge

1. To get a sense of the triangle’s vertices, draw them out on a piece of

paper.

2. Try different ways of using the length l.

🛠 Code Explanation

translate(this.pos.x,
this.pos.y)

This uses the x and y coordinates and
translates the triangle to that position

triangle(-this.l, -this.l/2,
-this.l, this.l/2, this.l, 0)

This spreads each vertex for each
coroner of the triangle based on the x, y
position and the length l

AI module C unit #1 of 67 96 www.elegantAI.org

http://www.elegantAI.org

❗ Go to sketch.js

We create a vehicle from the class template and put it in the position of
(100, 100).

🗒 Notes

We have our target (mouse) and a vehicle, but it isn’t moving. We need
to look at that next.

Sketch C1.24 a starting position

sketch.js

let target

let vehicle

function setup()

{

 createCanvas(400, 400)

 vehicle = new Vehicle(100, 100)

}

function draw()

{

 background(220)

 target = createVector(mouseX, mouseY)

 circle(target.x, target.y, 32)

 vehicle.show()

}

AI module C unit #1 of 68 96 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #1 of 69 96 www.elegantAI.org

Figure C1.24

http://www.elegantAI.org

With vectors, we describe movement a little bit differently. We could have
a whole unit just on this, but for now, I will go through it briefly and
simply. If you want to dive a little deeper, then I suggest reading Dan
Shiffman’s book The Nature of Code, which is also available as a web
page.

There are three elements to the movement of a vector object. They are:

1⃣ position

2⃣ velocity

3⃣ acceleration

In short, the acceleration (acc) is added to the velocity (vel), which in
turn is added to the position (pos). We start off creating three vectors
for each of these components. We may (or may not) give them any initial
values.

The acceleration will be the force exerted on the object by the position of
the target. Imagine the vehicle moving in a certain direction and the
target being at some angle to its path of movement. It will want to turn
towards that target. So there is a force acting on the vehicle to turn it
from moving in its current direction towards the target. It could just stop
turning and move, but if the target is moving and the vehicle is already
moving in a particular direction, then the correction is a force in the
direction of the target. If that makes sense. This is why later on we apply
a force.

Movement with vectors

AI module C unit #1 of 70 96 www.elegantAI.org

http://www.elegantAI.org

The velocity (vel) and acceleration (acc) vector components are added
and are initialised to zero.

🗒 Notes

This needs more to have any impact on what we are doing; again, we are
building it up slowly.

Sketch C1.25 velocity and acceleration

vehicle.js

class Vehicle

{

 constructor(x, y)

 {

 this.pos = createVector(x, y)

 this.vel = createVector(0, 0)

 this.acc = createVector(0, 0)

 this.l = 16

 }

 move()

 {

 }

 show()

 {

 translate(this.pos.x, this.pos.y)

 triangle(-this.l, -this.l/2, -this.l, this.l/2, this.l, 0)

 }

}

AI module C unit #1 of 71 96 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

this.vel = createVector(0, 0) Velocity is zero in the x and y direction

this.acc = createVector(0, 0) Acceleration is zero in the x and y
direction

AI module C unit #1 of 72 96 www.elegantAI.org

http://www.elegantAI.org

It may seem a bit backwards, but we first add the acceleration to the
velocity, then add the velocity to the position.

🗒 Notes

This means the vehicle doesn’t move.

Sketch C1.26 adding acc, vel and pos

vehicle.js

class Vehicle

{

 constructor(x, y)

 {

 this.pos = createVector(x, y)

 this.vel = createVector(0, 0)

 this.acc = createVector(0, 0)

 this.l = 16

 }

 move()

 {

 this.vel.add(this.acc)

 this.pos.add(this.vel)

 }

 show()

 {

 translate(this.pos.x, this.pos.y)

 triangle(-this.l, -this.l/2, -this.l, this.l/2, this.l, 0)

 }

}

AI module C unit #1 of 73 96 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

this.vel.add(this.acc) We are adding the acceleration to the velocity

this.pos.add(this.vel) We are adding the velocity to the position

AI module C unit #1 of 74 96 www.elegantAI.org

http://www.elegantAI.org

The acceleration is a force applied to the vehicle to turn it. We add a new
function to the Vehicle class called applyForce() with an argument
which will carry the value of the force applied. This force is added to
the acceleration. This force will depend on where the vehicle is and
where the target is.

Sketch C1.27 applying a force

vehicle.js

class Vehicle

{

 constructor(x, y)

 {

 this.pos = createVector(x, y)

 this.vel = createVector(0, 0)

 this.acc = createVector(0, 0)

 this.l = 16

 }

 applyForce(force)

 {

 this.acc.add(force)

 }

 move()

 {

 this.vel.add(this.acc)

 this.pos.add(this.vel)

 }

 show()

 {

 translate(this.pos.x, this.pos.y)

AI module C unit #1 of 75 96 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Building it up gradually.

🛠 Code Explanation

 triangle(-this.l, -this.l/2, -this.l, this.l/2, this.l, 0)

 }

}

applyForce(force) This is the new function in the Vehicle class that
will apply the force to change the acceleration

this.acc.add(force) The force is a vector that will change the
acceleration vector

AI module C unit #1 of 76 96 www.elegantAI.org

http://www.elegantAI.org

We want a function to seek the target, so we add one to the Vehicle
class. The target is already a vector (mouse.x, mouse.y). The desired
is a vector which is the difference (subtract) between the target and
where the vehicle is currently (this.pos).

Sketch C1.28 seeking the target

vehicle.js

class Vehicle

{

 constructor(x, y)

 {

 this.pos = createVector(x, y)

 this.vel = createVector(0, 0)

 this.acc = createVector(0, 0)

 this.l = 16

 }

 seek(target)

 {

 let desired = p5.Vector.sub(target, this.pos)

 }

 applyForce(force)

 {

 this.acc.add(force)

 }

 move()

 {

 this.vel.add(this.acc)

 this.pos.add(this.vel)

AI module C unit #1 of 77 96 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

 }

 show()

 {

 translate(this.pos.x, this.pos.y)

 triangle(-this.l, -this.l/2, -this.l, this.l/2, this.l, 0)

 }

}

seek(target) The function receives an argument the
target vector

let desired =
p5.Vector.sub(target, this.pos)

Subtracts the two vectors, target and
the position of the vehicle

AI module C unit #1 of 78 96 www.elegantAI.org

http://www.elegantAI.org

❗ Move to back to sketch.js

We will add three functions: seek(), move(), and show(). These are
the final changes to the main sketch.

🗒 Notes

As yet, there is still nothing to see; we still have a bit more to do in the
Vehicle class, so this is where we are heading next.

Sketch C1.29 seek, move and show

sketch.js

let target

let vehicle

function setup()

{

 createCanvas(400, 400)

 vehicle = new Vehicle(100, 100)

}

function draw()

{

 background(220)

 target = createVector(mouseX, mouseY)

 circle(target.x, target.y, 32)

 vehicle.seek(target)

 vehicle.show()

 vehicle.move()

}

AI module C unit #1 of 79 96 www.elegantAI.org

http://www.elegantAI.org

❗ Head back to vehicle.js

We are going to reset the acceleration; otherwise, it will keep
accumulating. We just want the actual current acceleration on each
iteration in the draw() function in sketch.js.

Sketch C1.30 reset acceleration

vehicle.js

class Vehicle

{

 constructor(x, y)

 {

 this.pos = createVector(x, y)

 this.vel = createVector(0, 0)

 this.acc = createVector(0, 0)

 this.l = 16

 }

 seek(target)

 {

 let desired = p5.Vector.sub(target, this.pos)

 }

 applyForce(force)

 {

 this.acc.add(force)

 }

 move()

 {

 this.vel.add(this.acc)

 this.pos.add(this.vel)

AI module C unit #1 of 80 96 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

There is a logic to this.

🛠 Code Explanation

 this.acc.set(0, 0)

 }

 show()

 {

 translate(this.pos.x, this.pos.y)

 triangle(-this.l, -this.l/2, -this.l, this.l/2, this.l, 0)

 }

}

this.acc.set(0, 0) Resets the acceleration to zero so that it doesn’t
keep accumulating

AI module C unit #1 of 81 96 www.elegantAI.org

http://www.elegantAI.org

We want to steer the vehicle towards the target; the steering
vector is the difference between the desired and the actual motion of the
vehicle.

Sketch C1.31 steering

vehicle.js

class Vehicle

{

 constructor(x, y)

 {

 this.pos = createVector(x, y)

 this.vel = createVector(0, 0)

 this.acc = createVector(0, 0)

 this.l = 16

 }

 seek(target)

 {

 let desired = p5.Vector.sub(target, this.pos)

 let steering = p5.Vector.sub(desired, this.vel)

 this.applyForce(steering)

 }

 applyForce(force)

 {

 this.acc.add(force)

 }

 move()

 {

 this.vel.add(this.acc)

AI module C unit #1 of 82 96 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

What you get is the vehicle appearing where the target is. We are building
step by step!

🛠 Code Explanation

 this.pos.add(this.vel)

 this.acc.set(0, 0)

 }

 show()

 {

 translate(this.pos.x, this.pos.y)

 triangle(-this.l, -this.l/2, -this.l, this.l/2, this.l, 0)

 }

}

let steering =
p5.Vector.sub(desired, this.vel)

The steering is a vector which is the
desired vector minus the vehicle velocity
vector

this.applyForce(steering) This vector is the force applied to the
vehicle to turn it towards the target

AI module C unit #1 of 83 96 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #1 of 84 96 www.elegantAI.org

Figure C1.31

http://www.elegantAI.org

The function heading() calculates the angle between an axis and the
vector. We use push() and pop() to isolate the movement of that
particular vehicle.

Sketch C1.32 rotate to the heading

vehicle.js

class Vehicle

{

 constructor(x, y)

 {

 this.pos = createVector(x, y)

 this.vel = createVector(0, 0)

 this.acc = createVector(0, 0)

 this.l = 16

 }

 seek(target)

 {

 let desired = p5.Vector.sub(target, this.pos)

 let steering = p5.Vector.sub(desired, this.vel)

 this.applyForce(steering)

 }

 applyForce(force)

 {

 this.acc.add(force)

 }

 move()

 {

 this.vel.add(this.acc)

AI module C unit #1 of 85 96 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We don’t want to simply push the vehicle towards the target; we want
it to turn (rotate) and face the direction of travel.

🛠 Code Explanation

 this.pos.add(this.vel)

 this.acc.set(0, 0)

 }

 show()

 {

 translate(this.pos.x, this.pos.y)

 push()

 rotate(this.vel.heading())

 triangle(-this.l, -this.l/2, -this.l, this.l/2, this.l, 0)

 pop()

 }

}

rotate(this.vel.heading()) Calculates the angle a 2D vector makes
with the positive x-axis and rotates it

AI module C unit #1 of 86 96 www.elegantAI.org

http://www.elegantAI.org

We need to limit the magnitude of the velocity of the vehicle; we do that
with the setMag() function. We give it an arbitrary maximum velocity
(maxVelocity) of 4. What you should get is the vehicle moving towards
the target rather than appearing instantly on top of it.

Sketch C1.33 getting it working

vehicle.js

class Vehicle

{

 constructor(x, y)

 {

 this.pos = createVector(x, y)

 this.vel = createVector(0, 0)

 this.acc = createVector(0, 0)

 this.l = 16

 this.maxVelocity = 4

 }

 seek(target)

 {

 let desired = p5.Vector.sub(target, this.pos)

 desired.setMag(this.maxVelocity)

 let steering = p5.Vector.sub(desired, this.vel)

 this.applyForce(steering)

 }

 applyForce(force)

 {

 this.acc.add(force)

 }

AI module C unit #1 of 87 96 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

What you will now see is the vehicle moving towards the target when you
move the target by clicking on the canvas.

🌻 Challenge

Try other values for maxVelocity.

🛠 Code Explanation

 move()

 {

 this.vel.add(this.acc)

 this.pos.add(this.vel)

 this.acc.set(0, 0)

 }

 show()

 {

 translate(this.pos.x, this.pos.y)

 push()

 rotate(this.vel.heading())

 triangle(-this.l, -this.l/2, -this.l, this.l/2, this.l, 0)

 pop()

 }

}

this.maxVelocity = 4 As it says this is the maximum velocity

desired.setMag(this.maxVelocity) Sets the magnitude of the desired

AI module C unit #1 of 88 96 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #1 of 89 96 www.elegantAI.org

Figure C1.33

http://www.elegantAI.org

To make it more realistic, rather than just finding the quickest way to get
to the target, we limit the maximum force applied to the vehicle
(maxForce) to 0.01. To do that, we use a built-in function called
limit(), which does exactly that. This means it arcs towards the target
rather than just stopping, turning, and moving.

Sketch C1.34 the maximum force

vehicle.js

class Vehicle

{

 constructor(x, y)

 {

 this.pos = createVector(x, y)

 this.vel = createVector(0, 0)

 this.acc = createVector(0, 0)

 this.l = 16

 this.maxVelocity = 4

 this.maxForce = 0.01

 }

 seek(target)

 {

 let desired = p5.Vector.sub(target, this.pos)

 desired.setMag(this.maxVelocity)

 let steering = p5.Vector.sub(desired, this.vel)

 steering.limit(this.maxForce)

 this.applyForce(steering)

 }

 applyForce(force)

 {

 this.acc.add(force)

AI module C unit #1 of 90 96 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We see a much more restrained vehicle, with more sweeping arcs rather
than point and move.

🌻 Challenges

1. Try different values of maxVelocity.

2. What happens if you remove the setMag() line of code (comment it

out)?

3. Try different values of maximum force.

4. What happens if you remove the limit() line of code (comment it

out)?

 }

 move()

 {

 this.vel.add(this.acc)

 this.pos.add(this.vel)

 this.acc.set(0, 0)

 }

 show()

 {

 translate(this.pos.x, this.pos.y)

 push()

 rotate(this.vel.heading())

 triangle(-this.l, -this.l/2, -this.l, this.l/2, this.l, 0)

 pop()

 }

}

AI module C unit #1 of 91 96 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

this.maxForce = 0.01 Helps to control the acceleration towards

the target

steering.limit(this.maxForce) Limits

AI module C unit #1 of 92 96 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #1 of 93 96 www.elegantAI.org

Figure C1.34

http://www.elegantAI.org

Changing desired to force and removing steering, this whole
seek(target) function has a revamp so that the force does the
steering. This doesn’t change the functionality of the code, but you can see
that there is more than one way to approach the problem.

Sketch C1.35 the force is now steering

vehicle.js

class Vehicle

{

 constructor(x, y)

 {

 this.pos = createVector(x, y)

 this.vel = createVector(0, 0)

 this.acc = createVector(0, 0)

 this.l = 16

 this.maxVelocity = 4

 this.maxForce = 0.01

 }

 seek(target)

 {

 let force = p5.Vector.sub(target, this.pos)

 force.setMag(this.maxVelocity)

 force.sub(this.vel)

 force.limit(this.maxForce)

 this.applyForce(force)

 }

 applyForce(force)

 {

 this.acc.add(force)

 }

AI module C unit #1 of 94 96 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

This is an alternative for you to wrap your head around; it does look a lot
more elegant.

🌻 Challenges

1. Play around with the values of maxVelocity and maxForce to get

something different.

2. Add sliders for the two variables.

3. Add some colour.

 move()

 {

 this.vel.add(this.acc)

 this.pos.add(this.vel)

 this.acc.set(0, 0)

 }

 show()

 {

 translate(this.pos.x, this.pos.y)

 push()

 rotate(this.vel.heading())

 triangle(-this.l, -this.l/2, -this.l, this.l/2, this.l, 0)

 pop()

 }

}

AI module C unit #1 of 95 96 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #1 of 96 96 www.elegantAI.org

Figure C1.35

http://www.elegantAI.org

