
Artificial
Intelligence

Module C

Unit #4

flappy bird

Module C Unit #4 flappy bird

Sketch C4.1 starting sketch

Sketch C4.2 Bird class

Sketch C4.3 gravity

Sketch C4.4 pipes

Sketch C4.5 drawing the pipes

Sketch C4.6 collision

Sketch C4.7 drawing the bird!

Sketch C4.8 mouse pressed

Sketch C4.9 oops

Sketch C4.10 culling the array

Sketch C4.11 splice the pipe

Sketch C4.12 simple bird brain

Sketch C4.13 next pipe please

Sketch C4.14 input data

Sketch C4.15 normalise

Sketch C4.16 synchronicity

Sketch C4.17 population of birds

Sketch C4.18 to flap or not to flap

Sketch C4.19 GPU v CPU

Sketch C4.20 bird fitness

Sketch C4.21 the bird is dead

Sketch C4.22 collision

Sketch C4.23 is anyone there

Sketch C4.24 mating the best ones

Sketch C4.25 normalising fitness

Sketch C4.26 crossover

Sketch C4.27 mutation

Sketch C4.28 next generation

Sketch C4.29 a new brain

Sketch C4.30 reset and off we go again

Sketch C4.31 eliminating silly birds

Content

AI module C unit #4 of 2 90 www.elegantAI.org

http://www.elegantAI.org

Flappy Bird is a relatively simple and yet very addictive game. It is a game
that many emulate in various coding languages, and p5.js is no exception.
In this module, we will start from scratch but not make a full working
game. The basic game has a bird that flaps its wings and goes up when
you tap the space bar (or click the mouse) and falls towards the ground
when you stop. It has to fly through a series of gaps created by random
pipes. The idea is to make it through all the pipes without hitting one for
as long as possible.

We are going to give the bird a brain, a neural network, and see if we can
train it to play the game through using a genetic algorithm approach,
which is a form of reinforcement learning. This is another neuroevolution
solution similar to the smart cars example previously. That one was a
regression task; this one is a classification task.

In the same process as before, those birds that last the longest will have
the best fitness scores and will pass on their genes (weights) to the next
generation (population).

Each bird will have a brain that has a random set of weights. We want to
use. The following data in our neural network as inputs:

1⃣ The y position of the bird

2⃣ The bird’s velocity

3⃣ The position of the top (or bottom) pipe

4⃣ The x position of the pipes

The reason that we can have four and not five inputs is that the distance
between the position of the top and bottom pipe is a constant (gap). This is
a classification problem because the output is either to jump up or not to
jump; our outputs are:

1⃣ jump

2⃣ not jump

Introduction to flappy bird neuroevolution

AI module C unit #4 of 3 90 www.elegantAI.org

http://www.elegantAI.org

To summarise our bird brain, we could have a hidden layer of, say, eight
nodes, so the feedforward neural network will have the following:

🀄 4 inputs

🀄 8 hidden nodes

🀄 2 outputs

🀄 plus 2 biases

AI module C unit #4 of 4 90 www.elegantAI.org

http://www.elegantAI.org

First, we need to code the basic game before we do anything clever with
neural networks and genetic algorithms. We need two files on top of the
sketch.js main file. We also need to add the ml5.js line of code to the
index.html file. The two named files are:

🀄 bird.js

🀄 pipes.js

You will have done this in the previous unit, so I won’t repeat the process
here in any detail. What you should have is shown in figure 1 below.

The basic game

AI module C unit #4 of 5 90 www.elegantAI.org

Figure 1

http://www.elegantAI.org

Adding the ml5.js line of code, as well as the files.

The index.html file (don’t forget)

<!DOCTYPE html>

<html lang="en">

 <head>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.11.1/p5.js"></script>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.11.1/addons/p5.sound.min.js"></script>

 <script src="https://unpkg.com/ml5@1/dist/ml5.min.js"></
script>

 <link rel="stylesheet" type="text/css" href="style.css">

 <meta charset="utf-8" />

 </head>

 <body>

 <main>

 </main>

 <script src="sketch.js"></script>

 <script src="bird.js"></script>

 <script src="pipes.js"></script>

 </body>

</html>

AI module C unit #4 of 6 90 www.elegantAI.org

http://www.elegantAI.org

Our main starting sketch in sketch.js, with a wider and thinner canvas
600 by 200.

🗒 Notes

We have a long, thin canvas because of the nature of the game; you can
do it with 400 by 400 if you wish.

Sketch C4.1 starting sketch

sketch.js

function setup()

{

 createCanvas(600, 200)

}

function draw()

{

 background(220)

}

AI module C unit #4 of 7 90 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #4 of 8 90 www.elegantAI.org

Figure C4.1

http://www.elegantAI.org

❗ Move to bird.js

In bird.js, we are going to create a Bird class with a constructor()
function. It will have an x horizontal value, which will stay constant as the
pipes effectively come towards it rather than the other way round. A y
vertical value will vary when the mouse is clicked. The velocity will be
zero initially. There will be some gravity so that it falls to the ground
when the mouse is not pressed and a force that pushes it upwards
against gravity when the mouse is pressed.

🗒 Notes

Defining and initialising all the variables we need

Sketch C4.2 Bird class

bird.js

class Bird

{

 constructor()

 {

 this.x = 50

 this.y = 120

 this.velocity = 0

 this.gravity = 0.5

 this.force = -10

 }

}

AI module C unit #4 of 9 90 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

this.x = 50 Fixed distance from the lefthand edge

this.y = 120 Starting vertical position

this.velocity = 0 Starting velocity

this.gravity = 0.5 Arbitrary gravity value acting downwards

this.force = -10 Flap force acting upwards when mouse
clicked, hence negative value

AI module C unit #4 of 10 90 www.elegantAI.org

http://www.elegantAI.org

When the bird flaps its wings (metaphorically speaking) the force (a form
of acceleration) is added to the vertical velocity. Gravity is acting on
the bird all the time (another acceleration) and the resultant velocity is
added to the y component of its position. And to give some realism(!) we
add some dampening (0.95). Also when it lands on the floor it just stays
there. The bird is represented by a circle. We will now have our usual
functions move() and show() plus another one called flap() which the
equivalent to the applyForce() previously.

Sketch C4.3 gravity

bird.js

class Bird

{

 constructor()

 {

 this.x = 50

 this.y = 120

 this.velocity = 0

 this.gravity = 0.5

 this.force = -10

 }

 flap()

 {

 this.velocity += this.force

 }

 move()

 {

 this.velocity += this.gravity

 this.y += this.velocity

 this.velocity *= 0.95

AI module C unit #4 of 11 90 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

At this point we are just creating the game and doing it quickly. We want
to focus on the main event which is the neuroevolution part. For now just
take the time to understand the code without there being too much
explanation at this point from me.

🛠 Code Explanation

 if (this.y > height)

 {

 this.y = height

 this.velocity = 0

 }

 }

 show()

 {

 stroke(0)

 noFill()

 circle(this.x, this.y, 20)

 }

}

this.velocity += this.force This is the upward force (negative 10) when
the bird flaps its wings

this.velocity += this.gravity Adding gravity to the velocity

this.y += this.velocity Adding the velocity to the vertical position

this.velocity *= 0.95 Adding a bit of simulation

if (this.y > height) Checks to see if it has hit the floor

this.y = height Stays on the floor

this.velocity = 0 Reduce the velocity to zero on the floor
until it flaps

AI module C unit #4 of 12 90 www.elegantAI.org

http://www.elegantAI.org

❗ Go to the pipes.js file

Now, to add the pipes, we have two pipes, one at the top and one at the
bottom. We have a constructor() function for the pipes, which will
have a vertical space between the pipes (100), a random top position for a
pipe, and a corresponding bottom position for a pipe. Each pipe will be 20
wide, and the velocity of the pipes has the value of 2.

🗒 Notes

This just sets the variables for the simple pipes.

🛠 Code Explanation

Sketch C4.4 pipes

pipes.js

class Pipe

{

 constructor()

 {

 this.spacing = 100

 this.top = random(height - this.spacing)

 this.bottom = this.top + this.spacing

 this.x = width

 this.w = 20

 this.velocity = 2

 }

}

this.spacing = 100 This is the gap between the top and bottom pipe
and is what flappy bird is going to fly through

this.top = random(height -
this.spacing)

The position of the top pipe, at some random
position

this.bottom = this.top +
this.spacing

The bottom pipe is relevant to the top pipe plus
the gap (spacing)

AI module C unit #4 of 13 90 www.elegantAI.org

http://www.elegantAI.org

this.x = width The pipe starts at the far righthand edge

this.w = 20 The width of the pipe

this.velocity = 2 The velocity of the pipe moving

AI module C unit #4 of 14 90 www.elegantAI.org

http://www.elegantAI.org

We will draw the pipes as simple rectangles. Remember, we aren’t trying to
recreate all the full features of the game, just the minimum. The
velocity for the pipes is not the same as the velocity for the bird going
up and down. We add the show() and move() functions.

Sketch C4.5 drawing the pipes

pipes.js

class Pipe

{

 constructor()

 {

 this.spacing = 100

 this.top = random(height - this.spacing)

 this.bottom = this.top + this.spacing

 this.x = width

 this.w = 20

 this.velocity = 2

 }

 show()

 {

 fill(51)

 noStroke()

 rect(this.x, 0, this.w, this.top)

 rect(this.x, this.bottom, this.w, height - this.bottom)

 }

 move()

 {

 this.x -= this.velocity

 }

AI module C unit #4 of 15 90 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We won’t see the bird or the pipes just yet; we will need to add these
functions to the main sketch.

🛠 Code Explanation

}

rect(this.x, 0, this.w,
this.top) Top pipe rectangle

rect(this.x, this.bottom,
this.w, height - this.bottom) Bottom pipe rectangle

this.x -= this.velocity Moves the pipes from right to left hence
the negative increment

AI module C unit #4 of 16 90 www.elegantAI.org

http://www.elegantAI.org

We need to know when the bird collides with the pipes. We will put this
collision in the pipe.js class. vColl means vertical collision and logically
hColl means horizontal collision. If you think through where the bird (as
a single point (x, y)) is in relation to the pipes, you can understand the
collision part. The argument (bird) will be the position of that one
particular bird, as there will be many of them at the start.

Sketch C4.6 collision

pipes.js

class Pipe

{

 constructor()

 {

 this.spacing = 100

 this.top = random(height - this.spacing)

 this.bottom = this.top + this.spacing

 this.x = width

 this.w = 20

 this.velocity = 2

 }

 show()

 {

 fill(51)

 noStroke()

 rect(this.x, this.w, this.top)

 rect(this.x, this.bottom, this.w, height - this.bottom)

 }

 move()

 {

 this.x -= this.velocity

AI module C unit #4 of 17 90 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

You will realise that nothing happens when you try to run this because we
haven’t put anything in draw() just yet. So, let’s get something happening
on the canvas, let’s make a playable, if rudimentary, flappy bird.

🛠 Code Explanation

 }

 collides(bird)

 {

 let vColl = bird.y < this.top || bird.y > this.bottom

 let hColl = bird.x > this.x && bird.x < this.x + this.w

 return vColl && hColl

 }

}

vColl = bird.y < this.top ||
bird.y > this.bottom

Checks to see if either one of these two
condition as are true

hColl = bird.x > this.x &&
bird.x < this.x + this.w

Checks to see if both conditions are true
at the same time

return vColl && hColl Returns true or false

AI module C unit #4 of 18 90 www.elegantAI.org

http://www.elegantAI.org

❗ Return to sketch.js

We need to create the bird, which will be a simple circle, and lots of pipes
moving across the canvas. Each bird will be a separate bird, whereas we
will have an array to keep track of the pipes.

🗒 Notes

Nowt (northern for nothing) to see yet.

🛠 Code Explanation

Sketch C4.7 drawing the bird!

sketch.js

let bird

let pipes = []

function setup()

{

 createCanvas(600, 200)

 bird = new Bird()

 pipes.push(new Pipe())

}

function draw()

{

 background(220)

}

let bird Our bird variable

let pipes = [] An empty array of pipes

bird = new Bird() Create a new bird

pipes.push(new Pipe()) Adding new pipes to the array

AI module C unit #4 of 19 90 www.elegantAI.org

http://www.elegantAI.org

To make the bird fly, we click the mouse (usually, we press the spacebar).

🗒 Notes

Still nothing to see yet.

🛠 Code Explanation

Sketch C4.8 mouse pressed

sketch.js

let bird

let pipes = []

function setup()

{

 createCanvas(600, 200)

 bird = new Bird()

 pipes.push(new Pipe())

}

function mousePressed()

{

 bird.flap()

}

function draw()

{

 background(220)

}

function mousePressed() Checks to see if mouse is clicked (pressed)

bird.flap() Calls the flap() function in Bird class

AI module C unit #4 of 20 90 www.elegantAI.org

http://www.elegantAI.org

Now, to draw the pipes and the bird, we will have to say oops when we
hit the pipe and remember to press the mouse to fly/jump. We draw a
pipe every 100 frames using modulo (%) and by counting the number of
frames.

Sketch C4.9 oops

sketch.js

let bird

let pipes = []

function setup()

{

 createCanvas(600, 200)

 bird = new Bird()

 pipes.push(new Pipe())

}

function mousePressed()

{

 bird.flap()

}

function draw()

{

 background(220)

 for (let i = pipes.length - 1; i >= 0; i--)

 {

 pipes[i].show()

 pipes[i].move()

 if (pipes[i].collides(bird))

 {

AI module C unit #4 of 21 90 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

If you click the mouse (or mousepad), the bird (circle) should move
upwards, and when it hits a pipe, you get an oops on the canvas. The
for() loop for the pipes works backwards so that it encounters the next
pipe in the array, which is being added to constantly. The array will just
keep on growing, something we will address later on. Th frame rate is how
often the screen refreshes; it is a continuous number.

🛠 Code Explanation

 text("OOPS", 50, height/2)

 }

 }

 bird.move()

 bird.show()

 if (frameCount % 100 === 0)

 {

 pipes.push(new Pipe())

 }

}

for (let i = pipes.length - 1; i
>= 0; i--)

This has the effect of always being then
next pipe approaching the bird

pipes[i].show() Draws each set of pipes created

pipes[i].move() Moves that pipe

if (pipes[i].collides(bird)) Checks to see if the collision conditions
have been met

text("OOPS", 50, height/2) If it has then text oops on canvas

if (frameCount % 100 === 0) The % gives you the remainder, so if it is
exactly divisible by a hundred then. . .

pipes.push(new Pipe()) . . .make a new pipe

AI module C unit #4 of 22 90 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #4 of 23 90 www.elegantAI.org

Figure C4.9

http://www.elegantAI.org

We have a slight problem. When the pipes go off the edge of the canvas,
they need removing; otherwise, the array will just get bigger and bigger.
Eventually, over time, the game will slow down. We use splice() to
remove them from the array.

Sketch C4.10 culling the array

sketch.js

let bird

let pipes = []

function setup()

{

 createCanvas(600, 200)

 bird = new Bird()

 pipes.push(new Pipe())

}

function mousePressed()

{

 bird.flap()

}

function draw()

{

 background(220)

 for (let i = pipes.length - 1; i >= 0; i--)

 {

 pipes[i].show()

 pipes[i].move()

 if (pipes[i].collides(bird))

 {

AI module C unit #4 of 24 90 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

You will get an error because we haven’t created the offscreen()
function in pipe.js yet.

🛠 Code Explanation

 text("OOPS", 50, height/2)

 }

 if (pipes[i].offscreen())

 {

 pipes.splice(i, 1)

 }

 }

 bird.move()

 bird.show()

 if (frameCount % 100 === 0)

 {

 pipes.push(new Pipe())

 }

}

for (let i = pipes.length - 1; i
>= 0; i--)

Cycles backwards through the array of
pipes

if (pipes[i].offscreen()) Checks to see if the pipe has gone off
the canvas

pipes.splice(i, 1) It it has remove that pipe

AI module C unit #4 of 25 90 www.elegantAI.org

http://www.elegantAI.org

❗ Wander over to pipes.js

The pipe is removed from the array if the x value of that pipe (this.x) is
less than -20 (width of the pipe); in other words, it has fully gone off the
edge of the canvas. Here we add the offscreen() function.

Sketch C4.11 splice the pipe

pipes.js

class Pipe

{

 constructor()

 {

 this.spacing = 100

 this.top = random(height - this.spacing)

 this.bottom = this.top + this.spacing

 this.x = width

 this.w = 20

 this.velocity = 2

 }

 show()

 {

 fill(51)

 noStroke()

 rect(this.x, 0, this.w, this.top)

 rect(this.x, this.bottom, this.w, height - this.bottom)

 }

 move()

 {

 this.x -= this.velocity

 }

AI module C unit #4 of 26 90 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

It should work perfectly now. This is all to do with managing its memory.
Your browser only has so much memory, and clogging it up like this is not
great and may crash or grind to a halt eventually.

🛠 Code Explanation

 collides(bird)

 {

 let vColl = bird.y < this.top || bird.y > this.bottom

 let hColl = bird.x > this.x && bird.x < this.x + this.w

 return vColl && hColl

 }

 offscreen()

 {

 return this.x < -this.w

 }

}

return this.x < -this.w Checks to see if this condition is true

AI module C unit #4 of 27 90 www.elegantAI.org

http://www.elegantAI.org

All we have done so far is make a simplified functional version of the
game. We are now going to develop the idea of a genetic algorithmic
approach to getting the bird to fly through the pipes perfectly without
hardcoding it but instead using a neuroevolution technique.

This is very similar to the smart cars, so it isn’t completely new for you
(assuming you completed that unit). Just make sure you have the ml5.js
installed in the index.html file. I will still walk you through it just in case
you haven’t or have forgotten.

Adding the brain

AI module C unit #4 of 28 90 www.elegantAI.org

http://www.elegantAI.org

❗ Go to bird.js

We are going to give the bird a brain as an ml5 neural network. We
place this brain in the constructor() part of the class. When you run
this, you should still get the same, but check for any error messages in
the console to make sure you have typed everything in OK.

Sketch C4.12 simple bird brain

bird.js

class Bird

{

 constructor()

 {

 ml5.setBackend("webgl")

 this.brain = ml5.neuralNetwork(

 {

 inputs: 4,

 outputs: ["flap", "no flap"],

 task: "classification",

 noTraining: true,

 neuroEvolution: true

 })

 this.x = 50

 this.y = 120

 this.velocity = 0

 this.gravity = 0.5

 this.force = -10

 }

 flap()

 {

 this.velocity += this.force

AI module C unit #4 of 29 90 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We haven’t connected the bird and brain together yet; the bird has no
brain!

🛠 Code Explanation

 }

 move()

 {

 this.velocity += this.gravity

 this.y += this.velocity

 this.velocity *= 0.95

 if (this.y > height)

 {

 this.y = height

 this.velocity = 0

 }

 }

 show()

 {

 stroke(0)

 noFill()

 circle(this.x, this.y, 20)

 }

}

inputs: 4 There are four inputs

outputs: ["flap", "no flap"] Our two outputs

task: "classification" Task declared

noTraining: true Not doing any training

neuroEvolution: true Declaring it is a neuro evolution network

AI module C unit #4 of 30 90 www.elegantAI.org

http://www.elegantAI.org

This is where we need to think a bit about what is happening. Once the
pipe has gone past the bird, it is no longer relevant. We already delete it
when it goes off the canvas. But we need a way of checking the distance
to the next one in front of the bird, not just the one at the front of the
array. So in bird.js, we need a function to measure that. The break
command simply terminates that checking loop. The new function
think(pipes) has the argument from the array of pipes.

Sketch C4.13 next pipe please

bird.js

class Bird

{

 constructor()

 {

 ml5.setBackend("webgl")

 this.brain = ml5.neuralNetwork(

 {

 inputs: 4,

 outputs: ["flap", "no flap"],

 task: "classification",

 noTraining: true,

 neuroEvolution: true

 })

 this.x = 50

 this.y = 120

 this.velocity = 0

 this.gravity = 0.5

 this.force = -10

 }

 think(pipes)

 {

AI module C unit #4 of 31 90 www.elegantAI.org

http://www.elegantAI.org

 let nextPipe = null

 for (let pipe of pipes)

 {

 if (pipe.x + pipe.w > this.x)

 {

 nextPipe = pipe

 break

 }

 }

 }

 flap()

 {

 this.velocity += this.force

 }

 move()

 {

 this.velocity += this.gravity

 this.y += this.velocity

 this.velocity *= 0.95

 if (this.y > height)

 {

 this.y = height

 this.velocity = 0

 }

 }

 show()

 {

 stroke(0)

 noFill()

 circle(this.x, this.y, 20)

AI module C unit #4 of 32 90 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Just checks each pipe in turn.

🛠 Code Explanation

 }

}

nextPipe = null The term null means empty or no value

for (let pipe of pipes) Goes through the array of pipes pulling out
a pipe at a time

nextPipe = pipe The nextPipe now has a value

break Stops the loop

AI module C unit #4 of 33 90 www.elegantAI.org

http://www.elegantAI.org

Now we have the next pipe, we can add it to the data inputs for our
neural network. These are our four inputs.

Sketch C4.14 input data

bird.js

class Bird

{

 constructor()

 {

 ml5.setBackend("webgl")

 this.brain = ml5.neuralNetwork(

 {

 inputs: 4,

 outputs: ["flap", "no flap"],

 task: "classification",

 noTraining: true,

 neuroEvolution: true

 })

 this.x = 50

 this.y = 120

 this.velocity = 0

 this.gravity = 0.5

 this.force = -10

 }

 think(pipes)

 {

 let nextPipe = null

 for (let pipe of pipes)

 {

 if (pipe.x + pipe.w > this.x)

AI module C unit #4 of 34 90 www.elegantAI.org

http://www.elegantAI.org

 {

 nextPipe = pipe

 break

 }

 }

 let inputs = [

 this.y,

 this.velocity,

 nextPipe.top,

 nextPipe.x - this.x

]

 }

 flap()

 {

 this.velocity += this.force

 }

 move()

 {

 this.velocity += this.gravity

 this.y += this.velocity

 this.velocity *= 0.95

 if (this.y > height)

 {

 this.y = height

 this.velocity = 0

 }

 }

 show()

 {

AI module C unit #4 of 35 90 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We now have our four inputs, and the nextPipe will be the pipe it
sees.

🛠 Code Explanation

 stroke(0)

 noFill()

 circle(this.x, this.y, 20)

 }

}

this.y Input 1: the vertical position

this.velocity Input 2: the current velocity of the bird

nextPipe.top Input 3: the vertical position of the top pipe

nextPipe.x - this.x Input 4: how far away is the next pipe

AI module C unit #4 of 36 90 www.elegantAI.org

http://www.elegantAI.org

To normalise all the inputs, we can divide any vertical measurements
by the height, which are the first three inputs. The fourth input is the
horizontal distance, so one is divided by the width. This gives us values
between 0 and 1.

Sketch C4.15 normalise

bird.js

class Bird

{

 constructor()

 {

 ml5.setBackend("webgl")

 this.brain = ml5.neuralNetwork(

 {

 inputs: 4,

 outputs: ["flap", "no flap"],

 task: "classification",

 noTraining: true,

 neuroEvolution: true

 })

 this.x = 50

 this.y = 120

 this.velocity = 0

 this.gravity = 0.5

 this.force = -10

 }

 think(pipes)

 {

 let nextPipe = null

 for (let pipe of pipes)

AI module C unit #4 of 37 90 www.elegantAI.org

http://www.elegantAI.org

 {

 if (pipe.x + pipe.w > this.x)

 {

 nextPipe = pipe

 break

 }

 }

 let inputs = [

 this.y / height,

 this.velocity / height,

 nextPipe.top / height,

 (nextPipe.x - this.x) / width

]

 }

 flap()

 {

 this.velocity += this.force

 }

 move()

 {

 this.velocity += this.gravity

 this.y += this.velocity

 this.velocity *= 0.95

 if (this.y > height)

 {

 this.y = height

 this.velocity = 0

 }

 }

AI module C unit #4 of 38 90 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Everything is now normalised.

 show()

 {

 stroke(0)

 noFill()

 circle(this.x, this.y, 20)

 }

}

AI module C unit #4 of 39 90 www.elegantAI.org

http://www.elegantAI.org

We want the code to run synchronously so that the model waits for
the inputs before carrying on. We use something a bit useful in ml5.js
called classifySync(), which is the same as classify but runs
synchronously. If the result is classified as flap, then the function flap()
is run; otherwise, nothing will happen.

Sketch C4.16 synchronicity

bird.js

class Bird

{

 constructor()

 {

 ml5.setBackend("webgl")

 this.brain = ml5.neuralNetwork(

 {

 inputs: 4,

 outputs: ["flap", "no flap"],

 task: "classification",

 noTraining: true,

 neuroEvolution: true

 })

 this.x = 50

 this.y = 120

 this.velocity = 0

 this.gravity = 0.5

 this.force = -10

 }

 think(pipes)

 {

 let nextPipe = null

 for (let pipe of pipes)
AI module C unit #4 of 40 90 www.elegantAI.org

http://www.elegantAI.org

 {

 if (pipe.x + pipe.w > this.x)

 {

 nextPipe = pipe

 break

 }

 }

 let inputs = [

 this.y / height,

 this.velocity / height,

 nextPipe.top / height,

 (nextPipe.x - this.x) / width

]

 let results = this.brain.classifySync(inputs)

 if (results[0].label === "flap")

 {

 this.flap()

 }

 }

 flap()

 {

 this.velocity += this.force

 }

 move()

 {

 this.velocity += this.gravity

 this.y += this.velocity

 this.velocity *= 0.95

 if (this.y > height)

 {

AI module C unit #4 of 41 90 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Do remember that there is no training; each bird has a different set of
random weights. The outputs will be effectively random despite having the
data inputs; it has no idea it has to jump or even why it should jump; it
does not even know the rules of the game.

🛠 Code Explanation

 this.y = height

 this.velocity = 0

 }

 }

 show()

 {

 stroke(0)

 noFill()

 circle(this.x, this.y, 20)

 }

}

results =
this.brain.classifySync(inputs)

From the input data we classify the
output (results)

if (results[0].label === "flap") If the first result is flap then. . .

this.flap() . . .flap like a bird

AI module C unit #4 of 42 90 www.elegantAI.org

http://www.elegantAI.org

❗ Return to sketch.js

We only currently have one bird. We need a population of birds all trying
to be the best bird they can be. We will make an array of 200 new birds.
We need an array of birds, and so we use a for() loop to create this
population of birds.

Sketch C4.17 population of birds

sketch.js

let birds = []

let pipes = []

let population = 200

function setup()

{

 createCanvas(600, 200)

 for (let i = 0; i < population; i++)

 {

 birds[i] = new Bird()

 }

 pipes.push(new Pipe())

}

function mousePressed()

{

 bird.flap()

}

function draw()

{

 background(220)

 for (let i = pipes.length - 1; i >= 0; i--)

AI module C unit #4 of 43 90 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

No point in running it yet; we have a few more amendments to make.

🛠 Code Explanation

 {

 pipes[i].show()

 pipes[i].move()

 if (pipes[i].collides(bird))

 {

 text("OOPS", 50, height/2)

 }

 if (pipes[i].offscreen())

 {

 pipes.splice(i, 1)

 }

 }

 bird.move()

 bird.show()

 if (frameCount % 100 === 0)

 {

 pipes.push(new Pipe())

 }

}

let birds = [] An empty array of birds replaces singular
bird

for (let i = 0; i < population;
i++) Creating a population of birds

birds[i] = new Bird() Adding the birds to the array

AI module C unit #4 of 44 90 www.elegantAI.org

http://www.elegantAI.org

We are now going to get the bird to think whether it should flap or not,
update its decision, and then show us what it can do. However, it is still too
early to run this just yet; we are still laying the foundation. Put
bird.move() and bird.show() inside a new for-of() loop and call
the think(pipes) function.

Sketch C4.18 to flap or not to flap

sketch.js

let birds = []

let pipes = []

let population = 200

function setup()

{

 createCanvas(600, 200)

 for (let i = 0; i < population; i++)

 {

 birds[i] = new Bird()

 }

 pipes.push(new Pipe())

}

function mousePressed()

{

 bird.flap()

}

function draw()

{

 background(220)

 for (let i = pipes.length - 1; i >= 0; i--)

 {
AI module C unit #4 of 45 90 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We cycle through all the birds one at a time.

 pipes[i].show()

 pipes[i].move()

 if (pipes[i].collides(bird))

 {

 text("OOPS", 50, height/2)

 }

 if (pipes[i].offscreen())

 {

 pipes.splice(i, 1)

 }

 }

 for (let bird of birds)

 {

 bird.think(pipes)

 bird.move()

 bird.show()

 }

 if (frameCount % 100 === 0)

 {

 pipes.push(new Pipe())

 }

}

AI module C unit #4 of 46 90 www.elegantAI.org

http://www.elegantAI.org

We can use the GPU or the CPU. I won’t go into the difference here
except to say that we want to use the CPU for better performance. The
The GPU is better when there is a heavy demand for graphics in some
games, for instance. The .tf reference is for TensorFlow, which underpins
ml5.js. TensorFlow is used with Python for machine learning, but there is a
JavaScript version called TensorFlow.js, which is compatible with ml5.js and
p5.js.

❗ If it is still running slow or very jerky, then suggest reducing the
number of birds, or try webgl.

Sketch C4.19 GPU v CPU

sketch.js

let birds = []

let pipes = []

let population = 200

function setup()

{

 createCanvas(600, 200)

 for (let i = 0; i < population; i++)

 {

 birds[i] = new Bird()

 }

 pipes.push(new Pipe())

 ml5.tf.setBackend("cpu")

}

function mousePressed()

{

 bird.flap()

}

AI module C unit #4 of 47 90 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

I found that this did make quite a difference depending on what device/
machine I used. The other alternative might be webgl. Play around and see
what works best for you.

function draw()

{

 background(220)

 for (let i = pipes.length - 1; i >= 0; i--)

 {

 pipes[i].show()

 pipes[i].move()

 if (pipes[i].collides(bird))

 {

 text("OOPS", 50, height/2)

 }

 if (pipes[i].offscreen())

 {

 pipes.splice(i, 1)

 }

 }

 for (let bird of birds)

 {

 bird.think(pipes)

 bird.move()

 bird.show()

 }

 if (frameCount % 100 === 0)

 {

 pipes.push(new Pipe())

 }

}

AI module C unit #4 of 48 90 www.elegantAI.org

http://www.elegantAI.org

❗ Hop over to bird.js

Next job is to define and find the fitness of each bird. We need to add
two more features, fitness and alive, in the constructor()
function. The bird’s fitness obviously increases the longer it is alive;
hence, fitness is a number, but alive is a boolean; it is either alive or
not, think of oops being a bit more terminal. We increment the fitness
in the move() function.

Sketch C4.20 bird fitness

bird.js

class Bird

{

 constructor()

 {

 ml5.setBackend("webgl")

 this.brain = ml5.neuralNetwork(

 {

 inputs: 4,

 outputs: ["flap", "no flap"],

 task: "classification",

 noTraining: true,

 neuroEvolution: true

 })

 this.x = 50

 this.y = 120

 this.velocity = 0

 this.gravity = 0.5

 this.force = -10

 this.fitness = 0

 this.alive = true

 }

AI module C unit #4 of 49 90 www.elegantAI.org

http://www.elegantAI.org

 think(pipes)

 {

 let nextPipe = null

 for (let pipe of pipes)

 {

 if (pipe.x + pipe.w > this.x)

 {

 nextPipe = pipe

 break

 }

 }

 let inputs = [

 this.y / height,

 this.velocity / height,

 nextPipe.top / height,

 (nextPipe.x - this.x) / width

]

 let results = this.brain.classifySync(inputs)

 if (results[0].label === "flap")

 {

 this.flap()

 }

 }

 flap()

 {

 this.velocity += this.force

 }

 move()

 {

AI module C unit #4 of 50 90 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

When the bird hits the pipe, we will want to eliminate it, remove it (sounds
less brutal).

🛠 Code Explanation

 this.velocity += this.gravity

 this.y += this.velocity

 this.velocity *= 0.95

 if (this.y > height)

 {

 this.y = height

 this.velocity = 0

 }

 this.fitness++

 }

 show()

 {

 stroke(0)

 noFill()

 circle(this.x, this.y, 20)

 }

}

this.fitness = 0 Each bird has a fitness of zero

this.alive = true Each bird is initialised as being alive at the start

this.fitness++ Increment the bird’s fitness on each iteration.

AI module C unit #4 of 51 90 www.elegantAI.org

http://www.elegantAI.org

❗ Return to sketch.js

However, we need a dead bird (sorry) when it hits a pipe. So, we have to
do a bit of refactoring to incorporate this here and also in the next sketch.
We have a nested loop to achieve this.

Sketch C4.21 the bird is dead

sketch.js

let birds = []

let pipes = []

let population = 200

function setup()

{

 createCanvas(600, 200)

 for (let i = 0; i < population; i++)

 {

 birds[i] = new Bird()

 }

 pipes.push(new Pipe())

 ml5.tf.setBackend("cpu")

}

function mousePressed()

{

 bird.flap()

}

function draw()

{

 background(220)

 for (let i = pipes.length - 1; i >= 0; i--)

AI module C unit #4 of 52 90 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

The only birds left are those which are alive (true), obviously.

🛠 Code Explanation

 {

 pipes[i].show()

 pipes[i].move()

 if (pipes[i].collides(bird))

 {

 text("OOPS", 50, height/2)

 }

 if (pipes[i].offscreen())

 {

 pipes.splice(i, 1)

 }

 }

 for (let bird of birds)

 {

 if (bird.alive)

 {

 bird.think(pipes)

 bird.move()

 bird.show()

 }

 }

 if (frameCount % 100 === 0)

 {

 pipes.push(new Pipe())

 }

}

if (bird.alive) Checks to see if this bird is alive (true) or dead (false)

AI module C unit #4 of 53 90 www.elegantAI.org

http://www.elegantAI.org

Now, when the bird collides with the pipe. We do a bit more reconfiguring.
Also, we remove the lines of code which are commented out (//). We are
no longer operating the birds with the mouse. We eliminate the birds if
they collide with the pipe.

Sketch C4.22 collision

sketch.js

let birds = []

let pipes = []

let population = 200

function setup()

{

 createCanvas(600, 200)

 for (let i = 0; i < population; i++)

 {

 birds[i] = new Bird()

 }

 pipes.push(new Pipe())

 ml5.tf.setBackend("cpu")

}

// function mousePressed()

// {

// bird.flap()

// }

function draw()

{

 background(220)

 for (let i = pipes.length - 1; i >= 0; i--)

AI module C unit #4 of 54 90 www.elegantAI.org

http://www.elegantAI.org

 {

 pipes[i].show()

 pipes[i].move()

 // if (pipes[i].collides(bird))

 // {

 // text("OOPS", 50, height/2)

 // }

 if (pipes[i].offscreen())

 {

 pipes.splice(i, 1)

 }

 }

 for (let bird of birds)

 {

 if (bird.alive)

 {

 for (let pipe of pipes)

 {

 if (pipe.collides(bird))

 {

 bird.alive = false

 }

 }

 bird.think(pipes)

 bird.move()

 bird.show()

 }

 }

 if (frameCount % 100 === 0)

 {

 pipes.push(new Pipe())

 }

AI module C unit #4 of 55 90 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We now have a working population of birds trying to get through the
pipes; however, they only last for one population, and once they have all
died, there are no more. We want to reproduce the next generation.

🛠 Code Explanation

}

for (let pipe of pipes) Goes through each pipe in turn

if (pipe.collides(bird)) Checks for any collisions

bird.alive = false If a collision occurs that bird is now dead (false)

AI module C unit #4 of 56 90 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #4 of 57 90 www.elegantAI.org

Figure C4.22

http://www.elegantAI.org

There is no predetermined lifespan. So they live as long as they don’t hit a
pipe, and when they have all died out, then we select the best ones. We
create a function to check if there are any birds left; if there are still
some birds flapping, it returns false and carries on checking.

Sketch C4.23 is anyone there

sketch.js

let birds = []

let pipes = []

let population = 200

function setup()

{

 createCanvas(600, 200)

 for (let i = 0; i < population; i++)

 {

 birds[i] = new Bird()

 }

 pipes.push(new Pipe())

 ml5.tf.setBackend("cpu")

}

function draw()

{

 background(220)

 for (let i = pipes.length - 1; i >= 0; i--)

 {

 pipes[i].show()

 pipes[i].move()

 if (pipes[i].offscreen())

 {

AI module C unit #4 of 58 90 www.elegantAI.org

http://www.elegantAI.org

 pipes.splice(i, 1)

 }

 }

 for (let bird of birds)

 {

 if (bird.alive)

 {

 for (let pipe of pipes)

 {

 if (pipe.collides(bird))

 {

 bird.alive = false

 }

 }

 bird.think(pipes)

 bird.move()

 bird.show()

 }

 }

 if (frameCount % 100 === 0)

 {

 pipes.push(new Pipe())

 }

}

function allBirdsDead()

{

 for (let bird of birds)

 {

 if (bird.alive)

 {

 return false

AI module C unit #4 of 59 90 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Not an imaginative name for a function, but it does what it says on the tin!

🛠 Code Explanation

 }

 }

 return true

}

for (let bird of birds) Check through all the birds

if (bird.alive) If a there is an alive bird then. . .

return false . . .the function allBirdsDead() is false, until. . .

return true . . .there are no alive birds

AI module C unit #4 of 60 90 www.elegantAI.org

http://www.elegantAI.org

What we want to do now is select the fittest birds and mate them to make
even better birds for the next round. This is an evolutionary approach to
selection. We will use the weightedSelection() algorithm that we
used in smart cars. To remind you, the fittest have the advantage, but the
others always have a chance, so it is a bit more like how natural selection
occurs.

Sketch C4.24 mating the best ones

sketch.js

let birds = []

let pipes = []

let population = 200

function setup()

{

 createCanvas(600, 200)

 for (let i = 0; i < population; i++)

 {

 birds[i] = new Bird()

 }

 pipes.push(new Pipe())

 ml5.tf.setBackend("cpu")

}

function draw()

{

 background(220)

 for (let i = pipes.length - 1; i >= 0; i--)

 {

 pipes[i].show()

 pipes[i].move()

 if (pipes[i].offscreen())

AI module C unit #4 of 61 90 www.elegantAI.org

http://www.elegantAI.org

 {

 pipes.splice(i, 1)

 }

 }

 for (let bird of birds)

 {

 if (bird.alive)

 {

 for (let pipe of pipes)

 {

 if (pipe.collides(bird))

 {

 bird.alive = false

 }

 }

 bird.think(pipes)

 bird.move()

 bird.show()

 }

 }

 if (frameCount % 100 === 0)

 {

 pipes.push(new Pipe())

 }

}

function allBirdsDead()

{

 for (let bird of birds)

 {

 if (bird.alive)

 {

AI module C unit #4 of 62 90 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We continue to put the pieces together; we still have to normalise the
fitness values. We went through the code for weighted selection in some
detail in smart cars.

 return false

 }

 }

 return true

}

function weightedSelection()

{

 let index = 0

 let start = random(1)

 while (start > 0)

 {

 start = start - birds[index].fitness

 index++

 }

 index--

 return birds[index].brain

}

AI module C unit #4 of 63 90 www.elegantAI.org

http://www.elegantAI.org

Now, to normalise the fitness, we use the for-of() loop to add up all
the fitness scores of all the birds (sum) and then go through each one and
divide by said sum. This means that we have fitness scores between 0 and
1, and they all add up to 1.

Sketch C4.25 normalising fitness

sketch.js

let birds = []

let pipes = []

let population = 200

function setup()

{

 createCanvas(600, 200)

 for (let i = 0; i < population; i++)

 {

 birds[i] = new Bird()

 }

 pipes.push(new Pipe())

 ml5.tf.setBackend("cpu")

}

function draw()

{

 background(220)

 for (let i = pipes.length - 1; i >= 0; i--)

 {

 pipes[i].show()

 pipes[i].move()

 if (pipes[i].offscreen())

 {

AI module C unit #4 of 64 90 www.elegantAI.org

http://www.elegantAI.org

 pipes.splice(i, 1)

 }

 }

 for (let bird of birds)

 {

 if (bird.alive)

 {

 for (let pipe of pipes)

 {

 if (pipe.collides(bird))

 {

 bird.alive = false

 }

 }

 bird.think(pipes)

 bird.move()

 bird.show()

 }

 }

 if (frameCount % 100 === 0)

 {

 pipes.push(new Pipe())

 }

}

function allBirdsDead()

{

 for (let bird of birds)

 {

 if (bird.alive)

 {

 return false

AI module C unit #4 of 65 90 www.elegantAI.org

http://www.elegantAI.org

 }

 }

 return true

}

function weightedSelection()

{

 let index = 0

 let start = random(1)

 while (start > 0)

 {

 start = start - birds[index].fitness

 index++

 }

 index--

 return birds[index].brain

}

function normaliseFitness()

{

 let sum = 0

 for (let bird of birds)

 {

 sum += bird.fitness

 }

 for (let bird of birds)

 {

 bird.fitness = bird.fitness / sum

 }

}

AI module C unit #4 of 66 90 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

This should be fairly straightforward. Another piece of the jigsaw. The
code was covered in smart cars.

AI module C unit #4 of 67 90 www.elegantAI.org

http://www.elegantAI.org

Now we tackle crossover, where we combine the DNA or genes of two
parents that are successful or have a high fitness level. This could be
very problematic because all you are doing is choosing the weights of one
neural network or the other. What ml5.js has is a built-in function for this
called crossover(), and we create a reproduction() function to
calculate all this.

Sketch C4.26 crossover

sketch.js

let birds = []

let pipes = []

let population = 200

function setup()

{

 createCanvas(600, 200)

 for (let i = 0; i < population; i++)

 {

 birds[i] = new Bird()

 }

 pipes.push(new Pipe())

 ml5.tf.setBackend("cpu")

}

function draw()

{

 background(220)

 for (let i = pipes.length - 1; i >= 0; i--)

 {

 pipes[i].move()

 pipes[i].show()

 // pipes[i].move()

AI module C unit #4 of 68 90 www.elegantAI.org

http://www.elegantAI.org

 if (pipes[i].offscreen())

 {

 pipes.splice(i, 1)

 }

 }

 for (let bird of birds)

 {

 if (bird.alive)

 {

 for (let pipe of pipes)

 {

 if (pipe.collides(bird))

 {

 bird.alive = false

 }

 }

 bird.think(pipes)

 bird.move()

 bird.show()

 }

 }

 if (frameCount % 100 === 0)

 {

 pipes.push(new Pipe())

 }

}

function allBirdsDead()

{

 for (let bird of birds)

 {

 if (bird.alive)

AI module C unit #4 of 69 90 www.elegantAI.org

http://www.elegantAI.org

 {

 return false

 }

 }

 return true

}

function weightedSelection()

{

 let index = 0

 let start = random(1)

 while (start > 0)

 {

 start = start - birds[index].fitness

 index++

 }

 index--

 return birds[index].brain

}

function normaliseFitness()

{

 let sum = 0

 for (let bird of birds)

 {

 sum += bird.fitness

 }

 for (let bird of birds)

 {

 bird.fitness = bird.fitness / sum

 }

}

AI module C unit #4 of 70 90 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

You can see how the crossover() function works.

function reproduction()

{

 let parentA = weightedSelection()

 let parentB = weightedSelection()

 let child = parentA.crossover(parentB)

}

AI module C unit #4 of 71 90 www.elegantAI.org

http://www.elegantAI.org

To mutate, we can use another new function included in ml5.js called
(guess what) mutate(). Mutation is important because it creates some
variety to prevent a poor initial selection from causing the birds to die out
prematurely. The number indicates how often a weight is altered. 0.01 is
1% of the population.

Sketch C4.27 mutation

sketch.js

let birds = []

let pipes = []

let population = 200

function setup()

{

 createCanvas(600, 200)

 for (let i = 0; i < population; i++)

 {

 birds[i] = new Bird()

 }

 pipes.push(new Pipe())

 ml5.tf.setBackend("cpu")

}

function draw()

{

 background(220)

 for (let i = pipes.length - 1; i >= 0; i--)

 {

 pipes[i].move()

 pipes[i].show()

 // pipes[i].move()

 if (pipes[i].offscreen())
AI module C unit #4 of 72 90 www.elegantAI.org

http://www.elegantAI.org

 {

 pipes.splice(i, 1)

 }

 }

 for (let bird of birds)

 {

 if (bird.alive)

 {

 for (let pipe of pipes)

 {

 if (pipe.collides(bird))

 {

 bird.alive = false

 }

 }

 bird.think(pipes)

 bird.move()

 bird.show()

 }

 }

 if (frameCount % 100 === 0)

 {

 pipes.push(new Pipe())

 }

}

function allBirdsDead()

{

 for (let bird of birds)

 {

 if (bird.alive)

 {

AI module C unit #4 of 73 90 www.elegantAI.org

http://www.elegantAI.org

 return false

 }

 }

 return true

}

function weightedSelection()

{

 let index = 0

 let start = random(1)

 while (start > 0)

 {

 start = start - birds[index].fitness

 index++

 }

 index--

 return birds[index].brain

}

function normaliseFitness()

{

 let sum = 0

 for (let bird of birds)

 {

 sum += bird.fitness

 }

 for (let bird of birds)

 {

 bird.fitness = bird.fitness / sum

 }

}

AI module C unit #4 of 74 90 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We do need some mutation.

function reproduction()

{

 let parentA = weightedSelection()

 let parentB = weightedSelection()

 let child = parentA.crossover(parentB)

 child.mutate(0.01)

}

AI module C unit #4 of 75 90 www.elegantAI.org

http://www.elegantAI.org

Once we have crossover and mutation, we need a new population. So
we need a new (empty) array of birds, and we will call this nextBirds =
[]. This is part of the reproduction() function. After we have gone
through the population and created the next birds from the children, we
then call this new generation of birds the current population. This means
we are rinse and repeat with each successive population replacing the
previous one, which we hope is better.

Sketch C4.28 next generation

sketch.js

let birds = []

let pipes = []

let population = 200

function setup()

{

 createCanvas(600, 200)

 for (let i = 0; i < population; i++)

 {

 birds[i] = new Bird()

 }

 pipes.push(new Pipe())

 ml5.tf.setBackend("cpu")

}

function draw()

{

 background(220)

 for (let i = pipes.length - 1; i >= 0; i--)

 {

 pipes[i].move()

 pipes[i].show()

AI module C unit #4 of 76 90 www.elegantAI.org

http://www.elegantAI.org

 // pipes[i].move()

 if (pipes[i].offscreen())

 {

 pipes.splice(i, 1)

 }

 }

 for (let bird of birds)

 {

 if (bird.alive)

 {

 for (let pipe of pipes)

 {

 if (pipe.collides(bird))

 {

 bird.alive = false

 }

 }

 bird.think(pipes)

 bird.move()

 bird.show()

 }

 }

 if (frameCount % 100 === 0)

 {

 pipes.push(new Pipe())

 }

}

function allBirdsDead()

{

 for (let bird of birds)

 {

AI module C unit #4 of 77 90 www.elegantAI.org

http://www.elegantAI.org

 if (bird.alive)

 {

 return false

 }

 }

 return true

}

function weightedSelection()

{

 let index = 0

 let start = random(1)

 while (start > 0)

 {

 start = start - birds[index].fitness

 index++

 }

 index--

 return birds[index].brain

}

function normaliseFitness()

{

 let sum = 0

 for (let bird of birds)

 {

 sum += bird.fitness

 }

 for (let bird of birds)

 {

 bird.fitness = bird.fitness / sum

 }

AI module C unit #4 of 78 90 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

A bit of refactoring, but similar outcome to smart cars in the previous unit.

}

function reproduction()

{

 let nextBirds = []

 for (let i = 0; i < population; i++)

 {

 let parentA = weightedSelection()

 let parentB = weightedSelection()

 let child = parentA.crossover(parentB)

 child.mutate(0.01)

 nextBirds[i] = new Bird(child)

 }

 birds = nextBirds

}

AI module C unit #4 of 79 90 www.elegantAI.org

http://www.elegantAI.org

❗ Fly over to bird.js

The new birds still have no brains, so we need to alter the Bird class to
correct this omission. If the bird has no brain, then create one; if it does
(because it is the next generation), then use it. The constructor()
function now receives an argument (brain), which is the new child brain
from the crossover.

Sketch C4.29 a new brain

bird.js

class Bird

{

 constructor(brain)

 {

 if (brain)

 {

 this.brain = brain

 }

 else

 {

 ml5.setBackend("webgl")

 this.brain = ml5.neuralNetwork(

 {

 inputs: 4,

 outputs: ["flap", "no flap"],

 task: "classification",

 noTraining: true,

 neuroEvolution: true

 })

 }

 this.x = 50

 this.y = 120

AI module C unit #4 of 80 90 www.elegantAI.org

http://www.elegantAI.org

 this.velocity = 0

 this.gravity = 0.5

 this.force = -10

 this.fitness = 0

 this.alive = true

 }

 think(pipes)

 {

 let nextPipe = null

 for (let pipe of pipes)

 {

 if (pipe.x + pipe.w > this.x)

 {

 nextPipe = pipe

 break

 }

 }

 let inputs = [

 this.y / height,

 this.velocity / height,

 nextPipe.top / height,

 (nextPipe.x - this.x) / width

]

 let results = this.brain.classifySync(inputs)

 if (results[0].label === "flap")

 {

 this.flap()

 }

 }

 flap()

AI module C unit #4 of 81 90 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We have a brain for every generation.

 {

 this.velocity += this.force

 }

 move()

 {

 this.velocity += this.gravity

 this.y += this.velocity

 this.velocity *= 0.95

 if (this.y > height)

 {

 this.y = height

 this.velocity = 0

 }

 this.fitness++

 }

 show()

 {

 stroke(0)

 noFill()

 circle(this.x, this.y, 20)

 }

}

AI module C unit #4 of 82 90 www.elegantAI.org

http://www.elegantAI.org

❗ Return to sketch.js

Now, to complete the code to make this work. If all the birds are dead,
then we need to reset the pipes. To do that, we create a new function
called resetPipes().

Sketch C4.30 reset and off we go again

sketch.js

let birds = []

let pipes = []

let population = 200

function setup()

{

 createCanvas(600, 200)

 for (let i = 0; i < population; i++)

 {

 birds[i] = new Bird()

 }

 pipes.push(new Pipe())

 ml5.tf.setBackend("cpu")

}

function draw()

{

 background(220)

 for (let i = pipes.length - 1; i >= 0; i--)

 {

 pipes[i].show()

 pipes[i].move()

 if (pipes[i].offscreen())

 {

AI module C unit #4 of 83 90 www.elegantAI.org

http://www.elegantAI.org

 pipes.splice(i, 1)

 }

 }

 for (let bird of birds)

 {

 if (bird.alive)

 {

 for (let pipe of pipes)

 {

 if (pipe.collides(bird))

 {

 bird.alive = false

 }

 }

 bird.think(pipes)

 bird.move()

 bird.show()

 }

 }

 if (frameCount % 100 === 0)

 {

 pipes.push(new Pipe())

 }

 if (allBirdsDead())

 {

 normaliseFitness()

 reproduction()

 resetPipes()

 }

}

function resetPipes()

AI module C unit #4 of 84 90 www.elegantAI.org

http://www.elegantAI.org

{

 pipes.splice(0, pipes.length - 1)

}

function allBirdsDead()

{

 for (let bird of birds)

 {

 if (bird.alive)

 {

 return false

 }

 }

 return true

}

function weightedSelection()

{

 let index = 0

 let start = random(1)

 while (start > 0)

 {

 start = start - birds[index].fitness

 index++

 }

 index--

 return birds[index].brain

}

function normaliseFitness()

{

 let sum = 0

AI module C unit #4 of 85 90 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

The reason for deleting the pipes except the last one (pipes.length -
1) is because if we don’t, it will try to find the distance to the next pipe,
but there isn’t one briefly. This stops us from getting an error message.

🛠 Code Explanation

 for (let bird of birds)

 {

 sum += bird.fitness

 }

 for (let bird of birds)

 {

 bird.fitness = bird.fitness / sum

 }

}

function reproduction()

{

 let nextBirds = []

 for (let i = 0; i < population; i++)

 {

 let parentA = weightedSelection()

 let parentB = weightedSelection()

 let child = parentA.crossover(parentB)

 child.mutate(0.01)

 nextBirds[i] = new Bird(child)

 }

 birds = nextBirds

}

pipes.splice(0, pipes.length - 1) Deletes all the pipes except for the
last one

AI module C unit #4 of 86 90 www.elegantAI.org

http://www.elegantAI.org

❗ Here in bird.js.

One final tweak: we can also eliminate any birds that fly off the screen or
hit the ground in bird.js.

Sketch C4.31 eliminating silly birds

bird.js

class Bird

{

 constructor(brain)

 {

 if (brain)

 {

 this.brain = brain

 }

 else

 {

 ml5.setBackend("webgl")

 this.brain = ml5.neuralNetwork(

 {

 inputs: 4,

 outputs: ["flap", "no flap"],

 task: "classification",

 noTraining: true,

 neuroEvolution: true

 })

 }

 this.x = 50

 this.y = 120

 this.velocity = 0

 this.gravity = 0.5

 this.force = -10

AI module C unit #4 of 87 90 www.elegantAI.org

http://www.elegantAI.org

 this.fitness = 0

 this.alive = true

 }

 think(pipes)

 {

 let nextPipe = null

 for (let pipe of pipes)

 {

 if (pipe.x + pipe.w > this.x)

 {

 nextPipe = pipe

 break

 }

 }

 let inputs = [

 this.y / height,

 this.velocity / height,

 nextPipe.top / height,

 (nextPipe.x - this.x) / width

]

 let results = this.brain.classifySync(inputs)

 if (results[0].label == "flap")

 {

 this.flap()

 }

 }

 flap()

 {

 this.velocity += this.force

 }

AI module C unit #4 of 88 90 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

If you leave it running for a while, you should see the results as a single
bird (although technically not necessarily) working its way through the
maze of pipes successfully.

🌻 Challenge

There are a lot of things you could do to improve or change this flappy
bird neuroevolution programme.

1. Build a slider to speed it up, as we did with the smart cars.

2. Add an image of the flappy bird (see Games in the resources tab).

 move()

 {

 this.velocity += this.gravity

 this.y += this.velocity

 this.velocity *= 0.95

 if (this.y > height || this.y < 0)

 {

 this.alive = false

 }

 this.fitness++

 }

 show()

 {

 stroke(0)

 noFill()

 circle(this.x, this.y, 20)

 }

}

AI module C unit #4 of 89 90 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

if (this.y > height || this.y < 0)
If the bird has gone below the
bottom edge or gone above the top
edge then. . .

this.alive = false . . .the bird is dead

AI module C unit #4 of 90 90 www.elegantAI.org

http://www.elegantAI.org

