
Creative
Coding

Module B

Unit #7

arrays

Module B Unit #7 Arrays

Sketch B7.1 starting sketch

Sketch B7.2 an array

Sketch B7.3 a bigger array

Sketch B7.4 looping through the array

Sketch B7.5 another array

Sketch B7.6 an array of strings

Sketch B7.7 random selection

Sketch B7.8 array length

Sketch B7.9 empty array

Sketch B7.10 filling the array

Sketch B7.11 drawing the circles

Sketch B7.12 clicking the mouse

Sketch B7.13 pushing the array

Sketch B7.14 console log

Sketch B7.15 appending using concat

Sketch B7.16 adding by splicing

Sketch B7.17 a better way

Sketch B7.18 in a different place

Sketch B7.19 replacing an element using splice

Sketch B7.20 deleting an element using splice

Sketch B7.21 an array of objects

Content

CC module B unit #7 of 2 50 www.elegantAI.org

An array is a key and vital part of coding. It is a way of storing data so
that it can be accessed, added to, or altered at a later date. One way to
think of it is as a series of boxes that can hold bits of data (whether
numbers or words). An array has a numbering system for each box, called
an index. In coding, counting starts with zero, not one. So the first box
is index 0, the second box is index 1, the third is index 2, and so on
(see Fig.1). You can imagine that it can be confusing that the third box is
index 2.

The format to identify an array is square brackets such as [23, 15, 37,
42, ...] so we can describe this array as follows (see fig.2):

index[0] is 23,

index[1] is 15,

index[2] is 37, and

index[3] is 42, etc.

You may be wondering what arrays may have to do with creative coding; a
lot is the quick answer, for there will be instances where you will want to
store information, for instance, colour names or other values for accessing
later.

Introduction to arrays

CC module B unit #7 of 3 50 www.elegantAI.org

On the top row are the index[] references and on the bottom row are
the actual values at those reference points. We need to give the array a
name. We can use let to define the array, such as:

We can initialise it with some initial values if we want.

let numbers = [] This is an empty array.

let numbers = [23, 15, 37, 42,
8, 51, 22, 99] The array has now got some values in it

CC module B unit #7 of 4 50 www.elegantAI.org

Figure: 1 index numbering system

Figure 2: the values (elements) inside each box

❗ new sketch

A simple sketch with a circle at (100, 100) with a diameter of 46.

🗒 Notes

We are doing all of this in the setup() function because later on we
don’t want to loop in the draw() function.

Sketch B7.1 starting sketch

let diameter = 46

function setup()

{

 createCanvas(400, 400)

 background(220)

 circle(100, 100, diameter)

}

CC module B unit #7 of 5 50 www.elegantAI.org

CC module B unit #7 of 6 50 www.elegantAI.org

Figure B7.1

We will put the diameter in an array. To get at the diameter, we will
need to access the array specifying the index number, which in this case
will be index 0. The array is called diameter and it is identified as an
array by the square brackets [].

🗒 Notes

Well done, you have created your first array.

🌻 Challenge

What happens if you put a 1 instead of 0 in the index (diameter[1])?

🛠 Code Explanation

Sketch B7.2 an array

let diameter = [46]

function setup()

{

 createCanvas(400, 400)

 background(220)

 circle(100, 100, diameter[0])

}

let diameter = [46] To make an array we use square brackets []

circle(100, 100, diameter[0]) The array has one element at index [0]

CC module B unit #7 of 7 50 www.elegantAI.org

CC module B unit #7 of 8 50 www.elegantAI.org

Figure B7.2

We can put more numbers (elements) in this array and then draw each
circle, spacing them out.

🗒 Notes

Notice we have to give an index number for each element of the array:

index [0] is 46
index [1] is 12
index [2] is 33
index [3] is 18
index [4] is 27

🛠 Code Explanation

Sketch B7.3 a bigger array

let diameter = [46, 12, 33, 18, 27]

function setup()

{

 createCanvas(400, 400)

 background(220)

 circle(100, 100, diameter[0])

 circle(100, 150, diameter[1])

 circle(100, 200, diameter[2])

 circle(100, 250, diameter[3])

 circle(100, 300, diameter[4])

}

let diameter = [46, 12, 33, 18, 27] An array holding five elements

CC module B unit #7 of 9 50 www.elegantAI.org

CC module B unit #7 of 10 50 www.elegantAI.org

Figure B7.3

This isn’t very efficient, so let’s use a for() loop.

🗒 Notes

We have them all on top of each other.

🌻 Challenge

How could we separate them?

🛠 Code Explanation

Sketch B7.4 looping through the array

let diameter = [46, 12, 33, 18, 27]

function setup()

{

 createCanvas(400, 400)

 background(220)

 for (let i = 0; i < 5; i++)

 {

 circle(100, 100, diameter[i])

 }

}

circle(100, 100, diameter[i]) We loop through each element one at a
time incrementing i by 1 each iteration

CC module B unit #7 of 11 50 www.elegantAI.org

CC module B unit #7 of 12 50 www.elegantAI.org

Figure B7.4

We add another array for the y position of the circles. This allows us to
space them back out again. We use the same principle for the y array.

🗒 Notes

We are back where we were.

🌻 Challenge

Think of a better name for the array than y.

🛠 Code Explanation

Sketch B7.5 another array

let diameter = [46, 12, 33, 18, 27]

let y = [100, 150, 200, 250, 300]

function setup()

{

 createCanvas(400, 400)

 background(220)

 for (let i = 0; i < 5; i++)

 {

 circle(100, y[i], diameter[i])

 }

}

circle(100, y[i], diameter[i]) We loop through two arrays, the
diameter and the y position

CC module B unit #7 of 13 50 www.elegantAI.org

CC module B unit #7 of 14 50 www.elegantAI.org

Figure B7.5

Rather than numbers, we can also have strings of letters, words, or a
combination of all three. Here, we will colour each circle with a
corresponding colour from an array of named colours.

🗒 Notes

A string is denoted by having speech (singular or double) marks.

🌻 Challenge

Add your own colours.

🛠 Code Explanation

Sketch B7.6 an array of strings

let diameter = [46, 12, 33, 18, 27]

let y = [100, 150, 200, 250, 300]

let colours = ['red', 'green', 'blue', 'orange', 'purple']

function setup()

{

 createCanvas(400, 400)

 background(220)

 for (let i = 0; i < 5; i++)

 {

 fill(colours[i])

 circle(100, y[i], diameter[i])

 }

}

fill(colours[i]) Each element is the named colour

CC module B unit #7 of 15 50 www.elegantAI.org

CC module B unit #7 of 16 50 www.elegantAI.org

Figure B7.6

Another useful trick is random selection from an array; here, we will
randomly select the colour of the circle.

🗒 Notes

You may get the same colour chosen more than once.

🌻 Challenges

1. Add more colours to the colour array.

2. Randomise the y position and the diameter.

🛠 Code Explanation

Sketch B7.7 random selection

let diameter = [46, 12, 33, 18, 27]

let y = [100, 150, 200, 250, 300]

let colours = ['red', 'green', 'blue', 'orange', 'purple']

function setup()

{

 createCanvas(400, 400)

 background(220)

 for (let i = 0; i < 5; i++)

 {

 fill(random(colours))

 circle(100, y[i], diameter[i])

 }

}

fill(random(colours)) The colours are randomly chosen for the array

CC module B unit #7 of 17 50 www.elegantAI.org

CC module B unit #7 of 18 50 www.elegantAI.org

Figure B7.7

Rather than hardcoding the length of the array, we can use a function
that already knows the length of the array.

🗒 Notes

Use diameter.length rather than hard-coding the value. This is useful
if you have arrays that change in size because it is possible to run code
that adds to the array (and removes elements).

🌻 Challenge

What would happen if there were six elements in the diameter array
but still only five in the y array?

🛠 Code Explanation

Sketch B7.8 array length

let diameter = [46, 12, 33, 18, 27]

let y = [100, 150, 200, 250, 300]

let colours = ['red', 'green', 'blue', 'orange', 'purple']

function setup()

{

 createCanvas(400, 400)

 background(220)

 for (let i = 0; i < diameter.length; i++)

 {

 fill(random(colours))

 circle(100, y[i], diameter[i])

 }

}

for (let i = 0; i <
diameter.length; i++)

The diameter.length looks at the array
and works out how many elements it has

CC module B unit #7 of 19 50 www.elegantAI.org

CC module B unit #7 of 20 50 www.elegantAI.org

Figure B7.8

❗ start a new sketch

We have created two empty arrays, one for x and one for y.

🗒 Notes

Empty arrays created.

🛠 Code Explanation

Sketch B7.9 empty array

let x = []

let y = []

function setup()

{

 createCanvas(400, 400)

 background(220)

}

let x = [] Empty x array

let y = [] Empty y array

CC module B unit #7 of 21 50 www.elegantAI.org

CC module B unit #7 of 22 50 www.elegantAI.org

Figure B7.9

We can fill the array with random values; we will give each array ten
numbers.

🗒 Notes

This fills each array with ten random numbers.

🛠 Code Explanation

Sketch B7.10 filling the array

let x = []

let y = []

function setup()

{

 createCanvas(400, 400)

 background(220)

 for (let i = 0; i < 10; i++)

 {

 x[i] = random(width)

 y[i] = random(height)

 }

}

x[i] = random(width) Ten random numbers between 0-400 stored in the x
array at each index i

y[i] = random(height) Ten random numbers between 0-400 stored in the y
array at each index i

CC module B unit #7 of 23 50 www.elegantAI.org

We can now draw these circles. Every time you run the sketch, it
generates a new set of ten circles.

🗒 Notes

This uses the length of the x array, x.length, so it is critical that the y
array is either the same length or longer. If you have two arrays that you
need to check, then you would need to build in some code to check and
compare lengths and always use the smaller of the two.

🌻 Challenge

Could you devise a way of checking the length of each array and
comparing them?

Sketch B7.11 drawing the circles

let x = []

let y = []

function setup()

{

 createCanvas(400, 400)

 background(220)

 for (let i = 0; i < 10; i++)

 {

 x[i] = random(width)

 y[i] = random(height)

 }

 for (let i = 0; i < x.length; i++)

 {

 circle(x[i], y[i], 20)

 }

}

CC module B unit #7 of 24 50 www.elegantAI.org

🛠 Code Explanation

for (let i = 0; i < x.length; i++) The x.length means that it stops when

it gets to the end of the x array

circle(x[i], y[i], 20)
Looks at each array (x and y) and
pulls each value in turn to collect the
coordinates of the circles

CC module B unit #7 of 25 50 www.elegantAI.org

CC module B unit #7 of 26 50 www.elegantAI.org

Figure B7.11

❗ start a new sketch

We can use a function called mousePressed(). It is a function that
waits for the mouse to be clicked (pressed) and will execute any code you
give it. Here we simply draw a circle every time we click on the canvas.

🗒 Notes

You get a circle every time you click on the canvas.

🛠 Code Explanation

Sketch B7.12 clicking the mouse

function setup()

{

 createCanvas(400, 400)

 background(220)

}

function mousePressed()

{

 let x = mouseX

 let y = mouseY

 circle(x, y, 20)

}

function mousePressed() This function is only executed when the
mouse is pressed

CC module B unit #7 of 27 50 www.elegantAI.org

CC module B unit #7 of 28 50 www.elegantAI.org

Figure B7.12

Instead, we can store the positions of the circles (their x and y
coordinates) when we click on the canvas. The function now pushes the x
and y coordinates into an array called bubbles using the push()
function.

🗒 Notes

The push() function does just that, pushing elements into an array.

🌻 Challenge

Could we push a third element, for instance, the diameter?

🛠 Code Explanation

Sketch B7.13 pushing the array

let bubbles = []

function setup()

{

 createCanvas(400, 400)

 background(220)

}

function mousePressed()

{

 let x = mouseX

 let y = mouseY

 circle(x, y, 20)

 bubbles.push(x, y)

}

bubbles.push(x, y) This pushes two elements into a single
array called bubbles

CC module B unit #7 of 29 50 www.elegantAI.org

CC module B unit #7 of 30 50 www.elegantAI.org

Figure B7.13

We can see inside the array by using something called console.log().
This sends information to the console.

🗒 Notes

You can see the results in the console below the code panel. When you
click once, you get two elements in the array: the first circle’s (bubble) x
and y coordinates, then when you click a second time, you get another
pair of coordinates for the second circle, and so on.

🌻 Challenge

Try console.log(bubbles.length).

🛠 Code Explanation

Sketch B7.14 console log

let bubbles = []

function setup()

{

 createCanvas(400, 400)

 background(220)

}

function mousePressed()

{

 let x = mouseX

 let y = mouseY

 circle(x, y, 20)

 bubbles.push(x, y)

 console.log(bubbles)

}

let bubbles = [] We define an empty array

CC module B unit #7 of 31 50 www.elegantAI.org

let x = mouseX Our x value is the mouseX position when we click

let y = mouseY Our y value is the mouseY position when we click

bubbles.push(x, y) The x and y values are pushed into the bubbles array

console.log(bubbles) We can see inside the bubbles array

CC module B unit #7 of 32 50 www.elegantAI.org

CC module B unit #7 of 33 50 www.elegantAI.org

Figure B7.14

Arrays can often be pre-populated and are therefore quite static. But you
can also add elements to them with new strings or integers, or even
change an element. Also, you are able to remove an element or add a whole
new database to the array. This makes it a powerful tool if you want to
use data that is dynamic.

You can also start with an empty array and fill it with newly created data.
Useful when creating an array or database with new data.

Adding and splicing

CC module B unit #7 of 34 50 www.elegantAI.org

❗ new sketch

The concat() function allows you to join two arrays together to make
one. We can see inside the array to check if they have been combined.

Sketch B7.15 appending using concat

let colours1 = ['red', 'green', 'blue']

let colours2 = ['yellow', 'orange', 'purple']

let colours3 = []

function setup()

{

 createCanvas(400, 400)

 background(220)

 colours3 = colours1.concat(colours2)

 console.log(colours3)

}

CC module B unit #7 of 35 50 www.elegantAI.org

🗒 Notes

This works with numbers and with objects.

🌻 Challenge

Try with three arrays. Does it work?

🛠 Code Explanation

colours3 = colours1.concat(colours2)
Adds two (colours1 and colours2)
arrays together to form one new
one (colours3)

CC module B unit #7 of 36 50 www.elegantAI.org

CC module B unit #7 of 37 50 www.elegantAI.org

Figure B7.15

❗ newish sketch

You can add new elements to the array using splice(). Here we add an
extra colour (yellow) at the end. There are three arguments to the
splice() function. The first argument (3) tells you where you want to
add the extra element, the second argument (0) means you are adding it,
and the third argument ('yellow') is what you are adding.

🗒 Notes

You get an extra element added to the array. If you want to add
something to the end of the array, giving it a hardcoded index position is
not going to work if the array keeps growing. A better way is shown in
the next sketch.

🌻 Challenges

1. Put ‘yellow’ in other positions in the array.

2. What happens if you give it a position, say, 13?

🛠 Code Explanation

Sketch B7.16 adding by splicing

let colours = ['red', 'green', 'blue']

function setup()

{

 createCanvas(400, 400)

 background(220)

 colours.splice(3, 0, 'yellow')

 console.log(colours)

}

colours.splice(3, 0, 'yellow') Putting yellow at index[3] which is the
fourth (end) element in the array

CC module B unit #7 of 38 50 www.elegantAI.org

CC module B unit #7 of 39 50 www.elegantAI.org

Figure B7.16

We can use the length of the array as our way of keeping track of the
number of elements in the array.

🗒 Notes

This is a stronger way of adding to an array.

🛠 Code Explanation

Sketch B7.17 a better way

let colours = ['red', 'green', 'blue']

function setup()

{

 createCanvas(400, 400)

 background(220)

 colours.splice(colours.length, 0, 'yellow')

 console.log(colours)

}

colours.splice(colours.length,
0, 'yellow')

Adds to the end of the array whatever
the length

CC module B unit #7 of 40 50 www.elegantAI.org

This time we place the yellow in spot index [1], just in case you haven’t
already tried.

🗒 Notes

It is now sandwiched between the red and the green.

Sketch B7.18 in a different place

let colours = ['red', 'green', 'blue']

function setup()

{

 createCanvas(400, 400)

 background(220)

 colours.splice(1, 0, 'yellow')

 console.log(colours)

}

CC module B unit #7 of 41 50 www.elegantAI.org

CC module B unit #7 of 42 50 www.elegantAI.org

Figure B7.18

As well as adding, we can replace an element in an array. We do this by
replacing the 0 with a 1 as the second argument.

🗒 Notes

The first argument tells you where to put it.

🌻 Challenge

Replace other colours.

🛠 Code Explanation

Sketch B7.19 replacing an element using splice

let colours = ['red', 'green', 'blue']

function setup()

{

 createCanvas(400, 400)

 background(220)

 colours.splice(1, 1, 'yellow')

 console.log(colours)

}

colours.splice(1, 1, 'yellow') Replaces the ‘green’ with ‘yellow’

CC module B unit #7 of 43 50 www.elegantAI.org

CC module B unit #7 of 44 50 www.elegantAI.org

Figure B7.19

You can delete an element from an array; here we delete two elements
starting at index 1.

🗒 Notes

We have removed both the green and blue colour elements from the array.

🌻 Challenge

Try: colours.splice(0, 3). You should get an empty array.

🛠 Code Explanation

Sketch B7.20 deleting an element using splice

let colours = ['red', 'green', 'blue']

function setup()

{

 createCanvas(400, 400)

 background(220)

 colours.splice(1, 2)

 console.log(colours)

}

colours.splice(1, 2) Deleting two elements starting at index[1]

CC module B unit #7 of 45 50 www.elegantAI.org

CC module B unit #7 of 46 50 www.elegantAI.org

Figure B7.20

❗ start a new sketch and call the array data for a change

Another way to use an array is to have objects. In this example, an object
is one circle. Each object has an x and y value; they are recognisable as
objects because of the colons (:). We will use console.log(data) as
before to see the difference. Each object is called inputs to collect the x
and y co-ordinates when you click on the canvas.

🗒 Notes

We use console.log(data) to see inside the array. It gives you a list
of objects, each one representing a circle. Inside each object are the x
and y inputs. Click on the arrow to reveal the contents of the array (fig.
1.21b).

Sketch B7.21 an array of objects

let data = []

function setup()

{

 createCanvas(400, 400)

 background(220)

}

function mousePressed()

{

 let inputs = {

 x: mouseX,

 y: mouseY

 }

 circle(inputs.x, inputs.y, 30)

 data.push(inputs)

 console.log(data)

}

CC module B unit #7 of 47 50 www.elegantAI.org

🌻 Challenge

Change the variable names of x and y to, say, flower and animal. See
where else you have to change them.

🛠 Code Explanation

let inputs = {...} We give the collective name for the x and
y values as inputs

x: mouseX For the x value we use a colon then the
input value or variable

y: mouseY For the y value we use a colon then the
input value or variable

circle(inputs.x, inputs.y, 50) The x co-ordinate of the object (inputs) is
inputs.x, repeated for the y component

CC module B unit #7 of 48 50 www.elegantAI.org

CC module B unit #7 of 49 50 www.elegantAI.org

Figure B7.21a

CC module B unit #7 of 50 50 www.elegantAI.org

Figure B7.21b: opening the object in the console

