
Creative
Coding

Module D

Unit #1

functions &
classes

Module D Unit #1 functions and classes

Sketch D1.1 starting sketch

Sketch D1.2 a single car

Sketch D1.3 moving the car

Sketch D1.4 it reappears

Sketch D1.5 function single car

Sketch D1.6 function single car

Sketch D1.7 car as an object

Sketch D1.8 alternative car object

Sketch D1.9 the constructor function

Sketch D1.10 the show() function

Sketch D1.11 the move() function

Sketch D1.12 creating a car

Sketch D1.13 to see it and move it

Sketch D1.14 car attributes

Sketch D1.15 a second car

Sketch D1.16 lots and lots of cars

Content

CC module D unit #1 of 2 52 www.elegantAI.org

This next section looks at coding with functions, objects, and classes. They
demonstrate the different ways you can code the same effect using
different approaches. The context we will use is of a vehicle or vehicles
moving either across the canvas.

We can draw the vehicle with a show() function and its movement with a
move() function. These are simple examples to highlight the differences to
give you a flavour of what that might look like.

It is all about functions, objects and classes

CC module D unit #1 of 3 52 www.elegantAI.org

We start a new sketch, as usual.

Sketch D1.1 starting sketch

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

}

CC module D unit #1 of 4 52 www.elegantAI.org

We create our car as a simple rectangle, starting at the left-hand edge of
the canvas.

Sketch D1.2 a single car

let x = 0

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 rect(x, 100, 50, 30)

}

CC module D unit #1 of 5 52 www.elegantAI.org

CC module D unit #1 of 6 52 www.elegantAI.org

Figure D1.2

Now we start the car moving across the canvas.

🗒 Notes

It moves slowly across the canvas and disappears from the right-hand
edge of the canvas, never to be seen again.

🌻 Challenge

Make it move faster.

🛠 Code Explanation

Sketch D1.3 moving the car

let x = 0

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 rect(x, 100, 50, 30)

 x += 1

}

x += 1 This adds 1 to x on each iteration

CC module D unit #1 of 7 52 www.elegantAI.org

CC module D unit #1 of 8 52 www.elegantAI.org

Figure D1.3

The car now reappears on the left-hand edge and off it goes again.

🗒 Notes

We have x as -50, so it looks like it is seamlessly continuous.

🛠 Code Explanation

Sketch D1.4 it reappears

let x = 0

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 rect(x, 100, 50, 30)

 x += 1

 if (x > width)

 {

 x = -50

 }

}

if (x > width) Checks to see if it has reached the edge of the canvas

x = -50 Returns the x value to -50 if the car has gone off the
edge of the canvas

CC module D unit #1 of 9 52 www.elegantAI.org

CC module D unit #1 of 10 52 www.elegantAI.org

Figure D1.4

We can express the same thing as before, but this time we use functions,
two of them to describe the car and to describe the motion. This means
we have the setup() function as before, we keep the draw() function
(empty for now), and add the other two functions called show() and
move(), putting a lot of the stuff in those new functions.

I am using a very simple example here, but bear with me as we will build
on this concept when we introduce classes later.

The car as a function

CC module D unit #1 of 11 52 www.elegantAI.org

We have moved the code that was in the draw() function and split it
between the two new functions: show() and move(). We have used the
same code as in the previous sketch, just rearranged it.

Sketch D1.5 function single car

let x = 0

function setup()

{

 createCanvas(440, 400)

}

function draw()

{

 // empty line of code

}

function show()

{

 background(220)

 rect(x, 100, 50, 30)

}

function move()

{

 x += 1

 if (x > width)

 {

 x = -50

 }

}

CC module D unit #1 of 12 52 www.elegantAI.org

🗒 Notes

Nothing to see. You can just cut and paste to save time; however, you will
notice that you get nothing, not even a canvas.

CC module D unit #1 of 13 52 www.elegantAI.org

CC module D unit #1 of 14 52 www.elegantAI.org

Figure D1.5

To get the two new functions to do anything, we need to call them from
inside the draw() function, and we do it as shown below.

Sketch D1.6 function single car

let x = 0

function setup()

{

 createCanvas(440, 400)

}

function draw()

{

 show()

 move()

}

function show()

{

 background(220)

 rect(x, 100, 50, 30)

}

function move()

{

 x += 1

 if (x > width)

 {

 x = -50

 }

}

CC module D unit #1 of 15 52 www.elegantAI.org

🗒 Notes

Now we are back where we started, but let’s not stop there; there is yet
another way we can do this even before we introduce classes.

CC module D unit #1 of 16 52 www.elegantAI.org

CC module D unit #1 of 17 52 www.elegantAI.org

Figure D1.6

This exercise is another way of doing the same thing. I include it because
it shows the concept of objects in relation to functions. We could easily
create two cars, but it would mean doubling all the code for each car. This
is another reason where classes come into their own, but we are getting
ahead of ourselves here.

The car as an object using functions

CC module D unit #1 of 18 52 www.elegantAI.org

❗ Start a new sketch (highlighted differences to basic sketch)

We have added the car as an object; notice the similarity to our earlier
sketch, but now we have to give it a name. In this case, we call it car.

🗒 Notes

Everything behaves just as before. Look at the code carefully and see how
you code the car as an object rather than just as a rectangle. Below is a
more detailed explanation of the code; it isn’t as scary as it might look.

🌻 Challenges

1. Give it a y component

2. Introduce the show() and move() functions like we did previously (if

struggling see next sketch)

Sketch D1.7 car as an object

let car = {x: 0}

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 rect(car.x, 100, 50, 30)

 car.x += 1

 if (car.x > width)

 {

 car.x = -50

 }

}

CC module D unit #1 of 19 52 www.elegantAI.org

🛠 Code Explanation

let car = {x: 0} We initialise the x component of the car object to 0

rect(car.x, 100, 50, 30) The x component of the car object

car.x += 1 Incrementing the x component by 1 on each
iteration

if (car.x > width) Check when the car has gone off the edge of the
canvas

car.x = -50 The x component is re-initialised to -50

CC module D unit #1 of 20 52 www.elegantAI.org

CC module D unit #1 of 21 52 www.elegantAI.org

Figure D1.7

Now we can use the functions show() and move() as well as introducing
a y component. The background can go into draw() or show().

Sketch D1.8 alternative car object

let car = {x: 0, y: 100}

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 show()

 move()

}

function show()

{

 rect(car.x, car.y, 50, 30)

}

function move()

{

 car.x += 1

 if (car.x > width)

 {

 car.x = -50

 }

}

CC module D unit #1 of 22 52 www.elegantAI.org

🗒 Notes

Looks quite elegant in my opinion; it should be exactly the same as before.

🛠 Code Explanation

let car = {x: 0, y: 100} Adding the y component to the car

object

rect(car.x, car.y, 50, 30) Adding the y component to the rectangle
drawn.

CC module D unit #1 of 23 52 www.elegantAI.org

CC module D unit #1 of 24 52 www.elegantAI.org

Figure D1.8

Using classes is a common way for coders to organise their code. It is not
essential, as you could do the same thing without using classes, but it is a
very powerful and useful approach and one worth investing the time in
understanding the approach.

It does take a bit of getting used to. I will try to illustrate this with a
simple example. Imagine you have a template (or blueprint) to build a car.
You, as a consumer, want some choice. The colour, the number of doors,
engine size, interior style, and so on. A class is like the basic template.
When you order a new car, they don’t ask if you want doors, seats, a
steering wheel, windows, etc. They come as standard.

A class will have the basics and the options. So that when they make
10,000 cars, they can all be slightly different depending on what the
customer wants. This is a very limited comparison, but you will see that
you can create lots of cars that all behave slightly differently. In our first
example, we will do just that with a sort of car.

In the diagram below (fig.1), you will see that the class is given a name.
It is usual to start the class name with a capital letter. Also, there are
three functions in the example below. You can have as many functions as
you like and can call them anything you like. You can see the show() and
move() functions we had before, but you can have any number of
functions.

The first function I use is called the constructor() function. This is
just the usual name given to it. This is where we hold the information
about any car we are going to build. Because it is a sort of template (or
blueprint) where we can make as many cars as we want, we prefix any
variable with the word this; for instance, the colour would be
this.colour, or the starting position will be this.x and this.y, and
so on.

The basic structure of the main sketch is demonstrated in fig.2. Where
you create the car or cars from the class and call the functions from
within the class.

Introduction to classes

CC module D unit #1 of 25 52 www.elegantAI.org

CC module D unit #1 of 26 52 www.elegantAI.org

Figure 1: class structure

CC module D unit #1 of 27 52 www.elegantAI.org

Figure 2: main elements in sketch

❗ new sketch

We start with our basic sketch and create a class called Car. In that class,
we have a constructor() function. This function has four elements that
give us details about the car: its colour, its x position, its y position, and
its velocity. This first example will not reveal the power of using classes
but a very gentle introduction to creating a class.

🗒 Notes

When we give attributes to an object in a class, we always use this.
before the attribute. There is nothing to see at this point.

Sketch D1.9 the constructor function

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

}

class Car

{

 constructor()

 {

 this.colour = 255

 this.x = 0

 this.y = 100

 this.velocity = 1

 }

}

CC module D unit #1 of 28 52 www.elegantAI.org

🛠 Code Explanation

this.colour = 255 For a car we define its colour

this.x = 0 For a car we define its x position

this.y = 100 For a car we define its y position

this.velocity = 1 For a car we define its velocity

CC module D unit #1 of 29 52 www.elegantAI.org

CC module D unit #1 of 30 52 www.elegantAI.org

Figure D1.9

In the show() function, we will describe what the car will look like.

Sketch D1.10 the show() function

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

}

class Car

{

 constructor()

 {

 this.colour = 255

 this.x = 0

 this.y = 100

 this.velocity = 1

 }

 show()

 {

 fill(this.colour)

 rect(this.x, this.y, 50, 30)

 }

}

CC module D unit #1 of 31 52 www.elegantAI.org

🗒 Notes

It pulls the information from the constructor() function. Still nothing
to see yet.

🛠 Code Explanation

fill(this.colour) This will fill it with white (255)

rect(this.x, this.y, 50, 30) Creates a rectangle rect(0, 100, 50, 30)

CC module D unit #1 of 32 52 www.elegantAI.org

CC module D unit #1 of 33 52 www.elegantAI.org

Figure D1.10

Next, we describe how the car is going to move with the move() function
inside the Car class.

Sketch D1.11 the move() function

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

}

class Car

{

 constructor()

 {

 this.colour = 255

 this.x = 0

 this.y = 100

 this.velocity = 1

 }

 show()

 {

 fill(this.colour)

 rect(this.x, this.y, 50, 30)

 }

 move()

CC module D unit #1 of 34 52 www.elegantAI.org

🗒 Notes

This is exactly the same as with the previous examples of a moving car.
However, we created a variable for the velocity rather than just having
a value (1). This allows us to alter it later. As before, still nothing to see.

🛠 Code Explanation

 {

 this.x += this.velocity

 if (this.x > width)

 {

 this.x = -50

 }

 }

}

this.x += this.velocity For each car we add the velocity

if (this.x > width) If a car reaches the edge of the canvas

this.x = -50 Return that car back to the lefthand edge

CC module D unit #1 of 35 52 www.elegantAI.org

CC module D unit #1 of 36 52 www.elegantAI.org

Figure D1.11

To create a car, we first give this car a name. Then, in setup(), we
create a new Car from the class as a template. We currently have fixed
values such as colour, x, y, and velocity.

Sketch D1.12 creating a car

let car

function setup()

{

 createCanvas(400, 400)

 car = new Car()

}

function draw()

{

 background(220)

}

class Car

{

 constructor()

 {

 this.colour = 255

 this.x = 0

 this.y = 100

 this.velocity = 1

 }

 show()

 {

 fill(this.colour)

CC module D unit #1 of 37 52 www.elegantAI.org

🗒 Notes

Be aware that the variable name for the car is a lowercase c, and the
name of the class is an uppercase C. They both have the same name,
which I admit is a little confusing, but they are totally separate entities.
One is a variable name, the other is a class name. Still nothing to see
here.

🛠 Code Explanation

 rect(this.x, this.y, 50, 30)

 }

 move()

 {

 this.x += this.velocity

 if (this.x > width)

 {

 this.x = -50

 }

 }

}

car = new Car() Creates a new car

CC module D unit #1 of 38 52 www.elegantAI.org

CC module D unit #1 of 39 52 www.elegantAI.org

Figure D1.12

In order to see the car, we have to call the show() function, and to move
the car, we have to call the move() function, both in the draw()
function. We ascribe these two functions to the new car we have created,
called car.

Sketch D1.13 to see it and move it

let car

function setup()

{

 createCanvas(400, 400)

 car = new Car()

}

function draw()

{

 background(220)

 car.show()

 car.move()

}

class Car

{

 constructor()

 {

 this.colour = 255

 this.x = 0

 this.y = 100

 this.velocity = 1

 }

CC module D unit #1 of 40 52 www.elegantAI.org

🗒 Notes

Finally, we get to see the car and watch it move.

🌻 Challenges

1. Change the colour

2. Change the x value

3. Change the y value

4. Change the velocity

5. Change the name of the variable to myCar

6. Change the name of the class

7. Change the name of the constructor(), show() and move() functions

🛠 Code Explanation

 show()

 {

 fill(this.colour)

 rect(this.x, this.y, 50, 30)

 }

 move()

 {

 this.x += this.velocity

 if (this.x > width)

 {

 this.x = -50

 }

 }

}

car.show() For this car we show it according to the show() function

car.move() For this car we move it according to the move() function

CC module D unit #1 of 41 52 www.elegantAI.org

CC module D unit #1 of 42 52 www.elegantAI.org

Figure D1.13

In the following sections, we will consider what we can do with classes
which makes all the trouble of creating them worthwhile. This is evident
when we want hundreds of them, where each one can be created
separately, independently.

The power of classes

CC module D unit #1 of 43 52 www.elegantAI.org

When we create the car, we can specify its attributes rather than hard-
code them in the constructor() function. We have given the car the
same values as before. They become the arguments in the
constructor() function: colour, x, y, and velocity. This is more like
a template where you can now specify what you want.

Sketch D1.14 car attributes

let car

function setup()

{

 createCanvas(400, 400)

 car = new Car(255, 0, 100, 1)

}

function draw()

{

 background(220)

 car.show()

 car.move()

}

class Car

{

 constructor(colour, x, y, velocity)

 {

 this.colour = colour

 this.x = x

 this.y = y

 this.velocity = velocity

 }

CC module D unit #1 of 44 52 www.elegantAI.org

🗒 Notes

The result is exactly the same as before because we have specified the
same features of our car. The beauty of this is that we can create a
second (or more) car with different features.

🌻 Challenge

Change the values/features of the car.

🛠 Code Explanation

 show()

 {

 fill(this.colour)

 rect(this.x, this.y, 50, 30)

 }

 move()

 {

 this.x += this.velocity

 if (this.x > width)

 {

 this.x = -50

 }

 }

}

car = new Car(255, 0, 100, 1) We give this car some attributes

constructor(colour, x, y,
velocity)

The attributes are received as arguments
in the constructor() function

this.colour = colour This car has the colour argument

this.x = x This car has the x position argument

this.y = y This car has the y position argument

this.velocity = velocity This car has the velocity argument

CC module D unit #1 of 45 52 www.elegantAI.org

CC module D unit #1 of 46 52 www.elegantAI.org

Figure D1.14

We add a second car and give it different features.

Sketch D1.15 a second car

let car

let car2

function setup()

{

 createCanvas(400, 400)

 car = new Car(255, 0, 100, 1)

 car2 = new Car(55, 0, 300, 2)

}

function draw()

{

 background(220)

 car.show()

 car.move()

 car2.show()

 car2.move()

}

class Car

{

 constructor(colour, x, y, velocity)

 {

 this.colour = colour

 this.x = x

 this.y = y

 this.velocity = velocity

 }

CC module D unit #1 of 47 52 www.elegantAI.org

🗒 Notes

With just a few lines of code, we have created a second car. You can see
the simple logic.

🌻 Challenge

Add a third car.

 show()

 {

 fill(this.colour)

 rect(this.x, this.y, 50, 30)

 }

 move()

 {

 this.x += this.velocity

 if (this.x > width)

 {

 this.x = -50

 }

 }

}

CC module D unit #1 of 48 52 www.elegantAI.org

CC module D unit #1 of 49 52 www.elegantAI.org

Figure D1.15

Here is a quick peek at what we could do with loops to draw lots of cars.
We have covered arrays and for() loops before. We create an array of
cars and cycle through them with random values for all the features
(except x). We then cycle through the array of cars, show and move them.
All this is done in the setup() and draw() functions; we don’t touch the
Car class!

Sketch D1.16 lots and lots of cars

let car = []

function setup()

{

 createCanvas(400, 400)

 for (let i = 0; i < 10; i++)

 {

 car[i] = new Car(random(255), 0, random(400), random(1, 5))

 }

}

function draw()

{

 background(220)

 for (let i = 0; i < car.length; i++)

 {

 car[i].show()

 car[i].move()

 }

}

class Car

{

 constructor(colour, x, y, velocity)

CC module D unit #1 of 50 52 www.elegantAI.org

🗒 Notes

I think that is pretty elegant!

🌻 Challenge

Just have a play.

 {

 this.colour = colour

 this.x = x

 this.y = y

 this.velocity = velocity

 }

 show()

 {

 fill(this.colour)

 rect(this.x, this.y, 50, 30)

 }

 move()

 {

 this.x += this.velocity

 if (this.x > width)

 {

 this.x = -50

 }

 }

}

CC module D unit #1 of 51 52 www.elegantAI.org

CC module D unit #1 of 52 52 www.elegantAI.org

Figure D1.16

