Creative
Codin
Module D

Unit #6
pixel

i<k | Content

Module D Unit #6 pixel arrays

Sketch Dé6.1
Sketch D6.2
Sketch D6.3
Sketch D6.4
Sketch D6.5
Sketch D6.6
Sketch D6.7

CC module D unit #6

starting sketch
loading the pixels
change the pixel
a row of pixels
every pixel array
the pixel values
another effect

2 of 21

www.elegantAl.org

http://www.elegantAI.org

i< | Introduction to pixel arrays

A canvas is a grid of pixels, a pixel array. Each with its own colour. Each
pixel is made up of four channels: red, green, blue, and alpha. We use
this when we are colouring in our shapes in RGB mode.

We can get all the pixel information and also alter it in our code. For that,
we use two functions: loadPixels() and updatePixels(). There is
still quite a bit happening between these two functions.

We have a grid where we can allocate an (X, y) co-ordinate for each pixel.
We use nested for() loops to scan all the pixels and update them.

If you are using a Mac or a Retina display, you will need to incorporate a
function called pixelDensity(); weird things happen.

We need to get our head round how the pixel array is arranged;
otherwise, it will seem a bit confusing. The array holds the four values for
each pixel. One pixel may have something like this:

let pixel = [132, 231, 5, 255]

Where 132 is the red value, 231 is the green value, 5 is the blue value,
and 255 is the alpha value. If we have two pixels, then the array looks
like this:

let pixel = [132, 231, 5, 255, 65, 21, 200, 157]

The last four elements of the array are the red value (65), green value
(21), blue value (200) and the alpha (157) of the second pixel and so on.
So the pixel array holds information about each pixel in blocks of four,
hence why we have to leap over each block in the loops.

So if you have a canvas of (400, 400) with each pixel having four channels
then the length of the pixel array is 400 x 400 x 4 = 640,000
elements in the array even though there are only 160,000 pixels.

We have another challenge to get the index value for a particular pixel. To
do this we need a simple formula. The first row is straightforward. We just
add X and y where Yy is zero. However when y = 1 for the second row X

CC module D unit #6 3 of 21 www.elegantAlorg

http://www.elegantAI.org

has already reached 400 (canvas width). So now the formula is x + (y
times width). The code will look like this:

let index[i] = x + (y % width)

This means that the index value for the pixel on the second row is:
0 + (1 x 400) = 400
This is correct and the next one is:

1 + (1 % 400) = 401

..and so on. However, when we are looping through to get a particular
value from the array, for example, the red value for a pixel, we need to
jump four elements in the array, so to get all the red values, or green, or
blue, or alpha, we now use the formula below:

let index[i] = x + (y x width) % 4

This may seem a bit laboured but hopefully will help as we work through
this shortly. Just remember what the array actually represents (one long
list of values for every channel and every pixel) and how you are accessing
it with the nested for() loops. It is all very logical.

CC module D unit #6 4 of 21 www.elegantAlorg

http://www.elegantAI.org

1<k | Sketch D6.1 starting sketch

Our starting sketch.

function setup()

{
createCanvas (400, 400)

function draw()

{
background(220)

CC module D unit #6 5 of 21 www.elegantAlorg

http://www.elegantAI.org

1=k | Sketch D6.2 loading the pixels

Introducing the two functions. The first gets all the pixels on the canvas
with an array of 640,000 elements. This does nothing except store that
information. Next, we will access a pixel and do something to it.

function setup()

{
createCanvas (400, 400)

function draw()

{
background(220)
loadPixels()
updatePixels()

All we have done is load the pixel array and updated the array, which
means we have done nothing.

K Code Explanation

loadPixels() Loads all the pixels (elements) in the canvas

updatePixels() This would update any changes to the pixel arrray

CC module D unit #6 6 of 21 www.elegantAlorg

http://www.elegantAI.org

Figure D6.2

m File w Editw Sketchw Help v English v Hello, TheHappyCoder! v

> sketch.js Saved: just now Preview

function setup()
{

createCanvas (400, 400)
b

1

2

3

4

5)

6 function draw()
7Y|{

8 background(220)
9 loadPixels()

0 updatePixels()
1

3

Console Clear VvV

CC module D unit #6 7 of 21 www.elegantAl.org

http://www.elegantAI.org

1=k | Sketch D6.3 change the pixel

To see what we are doing here, we will change the first pixel because we
know where each channel is in the array. Index[0] is red, index[1] is
green, index[2] is blue, and index[3] is the alpha. What we have done
here is change the very first pixel, making it red. You may struggle to see
this, but it is there if you zoom in (see Fig.1).

function setup()

{
createCanvas (400, 400)

function draw()
{
background(220)
loadPixels()
pixels[0] = 255
0
0
pixels[3] = 255

pixels[1]

pixels[2]

updatePixels()

We loaded and changed the first four elements of the pixel array, and
then updated the array to draw the results on the canvas.

#® Challenges

1. Make some other changes, play with the values.
2. Could you change one halfway across the canvas?

CC module D unit #6 8 of 21 www.elegantAlorg

http://www.elegantAI.org

K Code Explanation

pixels[@] = 255 The very first element is the red component giving it 255
pixels[1] = 0 The second element is the green component value of O
pixels[2] = 0 The third element is the blue which is also O

pixels[3] = 255 The fourth is the alpha of a value 255

CC module D unit #6 9 of 21 www.elegantAlorg

http://www.elegantAI.org

Figure D6.3

m)

ilew Editw Sketchw Help v English v

Hello, TheHappyCoder! v

° . Auto-refresh Algorithmic Art # by TheHappyCoder — p5js111.7 £ c
> sketchjs Saved: just now Preview
1 function setup()
2v|{
3 createCanvas (400, 400)
4 3
5
6 function draw()
7v/{
8 background(220)
9 loadPixels()
10 pixels[0] = 255
11 pixels[1] = @
12 pixels[2] = @
13 pixels[3] = 255
14 updatePixels()
15 |}

Console Clear WV

CC module D unit #6 10 of 21 www.elegantAl.org

http://www.elegantAI.org

Figure 1: a red pixel

Preview

CC module D unit #6 11 of 21 www.elegantAl.org

http://www.elegantAI.org

1<% | Sketch Dé.4 a row of pixels

In this instance, we are just going fo make all the pixels in the first row
red. We need to jump every four elements in the array, and so we need
to multiply the width by four (there are four times as many elements as
pixels). Also, I needed to bring in the pixelDensity(), otherwise, it may
not work.

function setup()
{
createCanvas (400, 400)
pixelDensity(1)
¥
function draw()
{
background(220)
loadPixels()
for (let x = 0; x < width % 4; x += 4)
{
pixels[x + 0] = 255
pixels[x + 1] = 0
pixels[x + 2] = 0
pixels[x + 3] = 255
+
updatePixels()
¥
", Notes

You can see what we have done: created a red line. We multiplied by four
as the width is just 400.

® Challenge

Try it without multiplying by four.

CC module D unit #6 12 of 21 www.elegantAlorg

http://www.elegantAI.org

Figure D6.4

m File v Edit v Sketch v Help v English v

Hello, TheHappyCoder! v

° . Auto-refresh Algorithmic Art #° by TheHappyCoder pS5.js 111.7 £ a
> sketch.js Saved: just now Preview
1 function setup()
2v|{
3 createCanvas (400, 400)
4 pixelDensity(1)
5|}
6
7 function draw()
8V {
9 background(220)
10 loadPixels()
1 for (let x = 0; x < width x 4; x += 4)
12y {
13 pixels[x + @] = 255
14 pixels[x + 11 = 0
15 pixels[x + =0
16 pixels[x + 3] = 255
17 %
18 updatePixels()
19 %}

Console Clear VvV

CC module D unit #6 13 of 21 www.elegantAl.org

http://www.elegantAI.org

i<k | Sketch D6.5 every pixel array

To colour every pixel on the canvas red, we need fo build the nested loop.
We start with the y value as the outside of the nested loops because we
want to move from top to bottom and on each row left to right. We add in
the formula for the index.

function setup()

{
createCanvas (400, 400)
pixelDensity(1)

function draw()

{
background(220)
loadPixels()
for (let y = 0; y < height; y++)
{
for (let x = 0; x < width; x++)
{
let index = (x + (y *x width)) x 4
pixels[index + @] = 255
pixels[index + 1] = 0
pixels[index + 2] = 0
pixels[index + 3] = 255
}
I
updatePixels()
b
", Notes

A nested loop covers the entire canvas.

CC module D unit #6 14 of 21 www.elegantAlorg

http://www.elegantAI.org

#® Challenge

ey

Try going from left to right rather than top to bottom.

CC module D unit #6 15 of 21 www.elegantAlorg

http://www.elegantAI.org

Figure D6.5

m File v Edit v Sketch v Help v English v

Hello, TheHappyCoder! v

° [| Auto-refresh Algorithmic Art #° by TheHappyCoder — pS5.js 111.7 $% Q
> sketch.js Saved: just now Preview
4 pixelDensity(1)
5 |}
6
7 function draw()
8v|{
9 background(220)
10 loadPixels()
1 for (let y = 0; y < height; y++)
12v| {
13 for (let x = 0; x < width; x++)
14 {
15 let index = (x + (y * width)) * 4
16 pixels[index + @] = 255
17 pixels[index + 1] = @
18 pixels[index + 2] = @
19 pixels[index + 3] = 255
20 }
21 }
22 updatePixels()
23 |}

Console Clear WV

CC module D unit #6 16 of 21 www.elegantAl.org

http://www.elegantAI.org

1<k | Sketch D6.6 the pixel values

We can play with these values and do inferesting stuff. Play around with
the variables yourself.

function setup()
{
createCanvas (400, 400)
pixelDensity(1)
¥
function draw()
{
background(220)
loadPixels()
for (let y = 0; y < height; y++)
{
for (let x = 0; x < width; x++)
{
let index = (x + (y x width)) x 4
pixels[index + 0] = X
pixels[index + 1] = 0
pixels[index + 2] =y
pixels[index + 3] = 255
}
I
updatePixels()
b
", Notes

You are linking the pixel element value to its position on the canvas.

CC module D unit #6 17 of 21 www.elegantAlorg

http://www.elegantAI.org

Figure D6.6

m File v Editv Sketchwv Help v English v

° . Auto-refresh Algorithmic Art #* by TheHappyCoder pS.js 111.7 £

> sketch.js Saved: just now Preview
4 pixelDensity(1)

5|}

6

7 function draw()

87 {

9 background(220)
10 loadPixels()
1 for (let y = 0; y < height; y++)

Hello, TheHappyCoder! v

£

12 {

13 for (let x = 0; x < width; x++)

14 {

15 let index = (x + (y * width)) * 4

16 pixels[index + 0] = x

17 pixels[index + 1] = @

18 pixels[index + 2] =y

19 pixels[index + 3] = 255

20 }

21 3

22 updatePixels()

23}

Console Clear WV

CC module D unit #6 18 of 21 www.elegantAl.org

http://www.elegantAI.org

1k | Sketch D6.7 another effect

And yet more playing, incorporating the y value.

function setup()

{
createCanvas (400, 400)
pixelDensity(1)

function draw()

{
background(220)
loadPixels()
for (let y = 0; y < height; y++)
{
for (let x = 0; x < width; x++)
{
let index = (x + (y *x width)) x 4
pixels[index + 0] = 0
pixels[index + 1] = 150
pixels[index + 2] =y
pixels[index + 3] = 255
}
I
updatePixels()

® Challenge

elw

Consider using mouseX and mouseY (see below).

CC module D unit #6 19 of 21 www.elegantAlorg

http://www.elegantAI.org

Figure D6.7

mF

ilewv Editv Sketchwv Helpv Englishv

Hello, TheHappyCoder! v

° . Auto-refresh Algorithmic Art #° by TheHappyCoder pS.js 111.7 $% Q
> sketch.js Saved: just now Preview
4 pixelDensity(1)
5 |}
6
7 function draw()
8v|{
9 background(220)
10 loadPixels()
1 for (let y = 0; y < height; y++)
12v| {
13 for (let x = 0; x < width; x++)
14 {
15 let index = (x + (y * width)) * 4
16 pixels[index + 0] = 0@
17 pixels[index + 1] = 150
18 pixels[index + 2] =y
19 pixels[index + 3] = 255
20 }
21 3
22 updatePixels()
23 %

Console Clear WV

CC module D unit #6 20 of 21 www.elegantAlorg

http://www.elegantAI.org

function setup()

{

createCanvas (400, 400)

pixelDensity(1)
I3

function draw()

{
background(220)
loadPixels()

for (let y = 0; y < height; y++)

{

for (let x = 0; x < width; x++)

{
let index =
pixels[index
pixels[index
pixels[index
pixels[index
b
b
updatePixels()
I3

CC module D unit #6

+

+ + +

0]
1]
2]
3]

(x + (y

*x width)) x 4

mouseX

150

= mouseY

255

21 of 21

www.elegantAl.org

http://www.elegantAI.org

