
Creative
Coding

Module D

Unit #6

pixel
arrays

Module D Unit #6 pixel arrays

Sketch D6.1 starting sketch

Sketch D6.2 loading the pixels

Sketch D6.3 change the pixel

Sketch D6.4 a row of pixels

Sketch D6.5 every pixel array

Sketch D6.6 the pixel values

Sketch D6.7 another effect

Content

CC module D unit #6 of 2 21 www.elegantAI.org

http://www.elegantAI.org

A canvas is a grid of pixels, a pixel array. Each with its own colour. Each
pixel is made up of four channels: red, green, blue, and alpha. We use
this when we are colouring in our shapes in RGB mode.

We can get all the pixel information and also alter it in our code. For that,
we use two functions: loadPixels() and updatePixels(). There is
still quite a bit happening between these two functions.

We have a grid where we can allocate an (x, y) co-ordinate for each pixel.
We use nested for() loops to scan all the pixels and update them.

If you are using a Mac or a Retina display, you will need to incorporate a
function called pixelDensity(); weird things happen.

We need to get our head round how the pixel array is arranged;
otherwise, it will seem a bit confusing. The array holds the four values for
each pixel. One pixel may have something like this:

let pixel = [132, 231, 5, 255]

Where 132 is the red value, 231 is the green value, 5 is the blue value,
and 255 is the alpha value. If we have two pixels, then the array looks
like this:

let pixel = [132, 231, 5, 255, 65, 21, 200, 157]

The last four elements of the array are the red value (65), green value
(21), blue value (200) and the alpha (157) of the second pixel and so on.
So the pixel array holds information about each pixel in blocks of four,
hence why we have to leap over each block in the loops.

So if you have a canvas of (400, 400) with each pixel having four channels
then the length of the pixel array is 400 x 400 x 4 = 640,000
elements in the array even though there are only 160,000 pixels.

We have another challenge to get the index value for a particular pixel. To
do this we need a simple formula. The first row is straightforward. We just
add x and y where y is zero. However when y = 1 for the second row x

Introduction to pixel arrays

CC module D unit #6 of 3 21 www.elegantAI.org

http://www.elegantAI.org

has already reached 400 (canvas width). So now the formula is x + (y
times width). The code will look like this:

let index[i] = x + (y * width)

This means that the index value for the pixel on the second row is:

0 + (1 * 400) = 400

This is correct and the next one is:

1 + (1 * 400) = 401

…and so on. However, when we are looping through to get a particular
value from the array, for example, the red value for a pixel, we need to
jump four elements in the array, so to get all the red values, or green, or
blue, or alpha, we now use the formula below:

let index[i] = x + (y * width) * 4

This may seem a bit laboured but hopefully will help as we work through
this shortly. Just remember what the array actually represents (one long
list of values for every channel and every pixel) and how you are accessing
it with the nested for() loops. It is all very logical.

CC module D unit #6 of 4 21 www.elegantAI.org

http://www.elegantAI.org

Our starting sketch.

Sketch D6.1 starting sketch

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

}

CC module D unit #6 of 5 21 www.elegantAI.org

http://www.elegantAI.org

Introducing the two functions. The first gets all the pixels on the canvas
with an array of 640,000 elements. This does nothing except store that
information. Next, we will access a pixel and do something to it.

🗒 Notes

All we have done is load the pixel array and updated the array, which
means we have done nothing.

🛠 Code Explanation

Sketch D6.2 loading the pixels

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 loadPixels()

 updatePixels()

}

loadPixels() Loads all the pixels (elements) in the canvas

updatePixels() This would update any changes to the pixel arrray

CC module D unit #6 of 6 21 www.elegantAI.org

http://www.elegantAI.org

CC module D unit #6 of 7 21 www.elegantAI.org

Figure D6.2

http://www.elegantAI.org

To see what we are doing here, we will change the first pixel because we
know where each channel is in the array. Index[0] is red, index[1] is
green, index[2] is blue, and index[3] is the alpha. What we have done
here is change the very first pixel, making it red. You may struggle to see
this, but it is there if you zoom in (see Fig.1).

🗒 Notes

We loaded and changed the first four elements of the pixel array, and
then updated the array to draw the results on the canvas.

🌻 Challenges

1. Make some other changes, play with the values.

2. Could you change one halfway across the canvas?

Sketch D6.3 change the pixel

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 loadPixels()

 pixels[0] = 255

 pixels[1] = 0

 pixels[2] = 0

 pixels[3] = 255

 updatePixels()

}

CC module D unit #6 of 8 21 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

pixels[0] = 255 The very first element is the red component giving it 255

pixels[1] = 0 The second element is the green component value of 0

pixels[2] = 0 The third element is the blue which is also 0

pixels[3] = 255 The fourth is the alpha of a value 255

CC module D unit #6 of 9 21 www.elegantAI.org

http://www.elegantAI.org

CC module D unit #6 of 10 21 www.elegantAI.org

Figure D6.3

http://www.elegantAI.org

CC module D unit #6 of 11 21 www.elegantAI.org

Figure 1: a red pixel

http://www.elegantAI.org

In this instance, we are just going to make all the pixels in the first row
red. We need to jump every four elements in the array, and so we need
to multiply the width by four (there are four times as many elements as
pixels). Also, I needed to bring in the pixelDensity(), otherwise, it may
not work.

🗒 Notes

You can see what we have done: created a red line. We multiplied by four
as the width is just 400.

🌻 Challenge

Try it without multiplying by four.

Sketch D6.4 a row of pixels

function setup()

{

 createCanvas(400, 400)

 pixelDensity(1)

}

function draw()

{

 background(220)

 loadPixels()

 for (let x = 0; x < width * 4; x += 4)

 {

 pixels[x + 0] = 255

 pixels[x + 1] = 0

 pixels[x + 2] = 0

 pixels[x + 3] = 255

 }

 updatePixels()

}

CC module D unit #6 of 12 21 www.elegantAI.org

http://www.elegantAI.org

CC module D unit #6 of 13 21 www.elegantAI.org

Figure D6.4

http://www.elegantAI.org

To colour every pixel on the canvas red, we need to build the nested loop.
We start with the y value as the outside of the nested loops because we
want to move from top to bottom and on each row left to right. We add in
the formula for the index.

🗒 Notes

A nested loop covers the entire canvas.

Sketch D6.5 every pixel array

function setup()

{

 createCanvas(400, 400)

 pixelDensity(1)

}

function draw()

{

 background(220)

 loadPixels()

 for (let y = 0; y < height; y++)

 {

 for (let x = 0; x < width; x++)

 {

 let index = (x + (y * width)) * 4

 pixels[index + 0] = 255

 pixels[index + 1] = 0

 pixels[index + 2] = 0

 pixels[index + 3] = 255

 }

 }

 updatePixels()

}

CC module D unit #6 of 14 21 www.elegantAI.org

http://www.elegantAI.org

🌻 Challenge

Try going from left to right rather than top to bottom.

CC module D unit #6 of 15 21 www.elegantAI.org

http://www.elegantAI.org

CC module D unit #6 of 16 21 www.elegantAI.org

Figure D6.5

http://www.elegantAI.org

We can play with these values and do interesting stuff. Play around with
the variables yourself.

🗒 Notes

You are linking the pixel element value to its position on the canvas.

Sketch D6.6 the pixel values

function setup()

{

 createCanvas(400, 400)

 pixelDensity(1)

}

function draw()

{

 background(220)

 loadPixels()

 for (let y = 0; y < height; y++)

 {

 for (let x = 0; x < width; x++)

 {

 let index = (x + (y * width)) * 4

 pixels[index + 0] = x

 pixels[index + 1] = 0

 pixels[index + 2] = y

 pixels[index + 3] = 255

 }

 }

 updatePixels()

}

CC module D unit #6 of 17 21 www.elegantAI.org

http://www.elegantAI.org

CC module D unit #6 of 18 21 www.elegantAI.org

Figure D6.6

http://www.elegantAI.org

And yet more playing, incorporating the y value.

🌻 Challenge

Consider using mouseX and mouseY (see below).

Sketch D6.7 another effect

function setup()

{

 createCanvas(400, 400)

 pixelDensity(1)

}

function draw()

{

 background(220)

 loadPixels()

 for (let y = 0; y < height; y++)

 {

 for (let x = 0; x < width; x++)

 {

 let index = (x + (y * width)) * 4

 pixels[index + 0] = 0

 pixels[index + 1] = 150

 pixels[index + 2] = y

 pixels[index + 3] = 255

 }

 }

 updatePixels()

}

CC module D unit #6 of 19 21 www.elegantAI.org

http://www.elegantAI.org

CC module D unit #6 of 20 21 www.elegantAI.org

Figure D6.7

http://www.elegantAI.org

function setup()
{
 createCanvas(400, 400)
 pixelDensity(1)
}

function draw()
{
 background(220)
 loadPixels()
 for (let y = 0; y < height; y++)
 {
 for (let x = 0; x < width; x++)
 {
 let index = (x + (y * width)) * 4
 pixels[index + 0] = mouseX
 pixels[index + 1] = 150
 pixels[index + 2] = mouseY
 pixels[index + 3] = 255
 }
 }
 updatePixels()
}

CC module D unit #6 of 21 21 www.elegantAI.org

http://www.elegantAI.org

