
Internet of
Things

Module A

Unit #8

button

Module A Unit #8 button

Sketch A8.1 LED button

Sketch A8.2 LED toggle

Sketch A8.3 debounce

Contents

IoT module A unit #8 of 2 13 www.elegantAI.org

http://www.elegantAI.org

The button is a tactile or momentary push button. It makes contact with a
metal plate when you push down and completes the circuit. When you stop
pushing, it releases and is no longer in contact and hence breaks the
circuit. See Fig. 2.

As you can see, it has four pins protruding from the body of the button
and a black button on top. This kind of button fits nicely on the
breadboard. The pins are connected as shown in Fig. 2. When you press the
button, you connect the pins from left to right (as seen in the diagram
below). The pins top to bottom are already connected internally.

To use this button, see Fig.1 (rather than a button module), we need a
resistor. The beauty of the Arduino is that it has a built-in resistor we can
use with the button (but not with an LED!). It is called a pull-up resistor,
more on that later.

Introduction to the button

IoT module A unit #8 of 3 13 www.elegantAI.org

Figure 1: button

http://www.elegantAI.org

IoT module A unit #8 of 4 13 www.elegantAI.org

Figure 2: the button

http://www.elegantAI.org

1 x Arduino Nano 33 IoT

1 x breadboard

1 x LED traffic lights

1 x button

2 x male to male jumper leads

We connect (on the same side of the protruding pin) one pin to a ground
GND pin and the other pin to D5 (Arduino pin 5). You can use any digital
pin; using pin 5 is just a suggestion.

One of the pins -> GND

The other pin -> D5 (pin 5)

What you will need

IoT module A unit #8 of 5 13 www.elegantAI.org

http://www.elegantAI.org

You will need two wires to connect the button to the device.

LEDs as before.

The circuit diagram below shows the traffic light LEDs as we had them
before (no change). We are going to add the button to the breadboard. You
can put it anywhere away from the board itself. I generally place it across
the central divide running the length of the breadboard.

See Fig. 3 below. The wiring diagram shows the connections; your board
will look quite different.

Circuit Diagram for the button

Button Arduino Pins

OUT 5

GND GND

Traffic Lights Arduino Pins

GND GND

R (red) 2

Y (yellow) 3

G (green) 4

IoT module A unit #8 of 6 13 www.elegantAI.org

http://www.elegantAI.org

IoT module A unit #8 of 7 13 www.elegantAI.org

Figure 3: circuit diagram

http://www.elegantAI.org

Connect the button as shown, then after writing the code and uploading it
to the Arduino, press the button. The red LED should come on when
pressed and off when released. When using the pull-up resistor, the
default (not pressed) state is HIGH. This is a little bit counterintuitive; if
you use an external resistor, the opposite is true.

Sketch A8.1 LED button

int ledPin = 2;

int buttonPin = 5;

void setup()

{

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin, INPUT_PULLUP);

}

void loop()

{

 int button = digitalRead(buttonPin);

 if (button != LOW)

 {

 digitalWrite(ledPin, LOW);

 }

 else

 {

 digitalWrite(ledPin, HIGH);

 }

}

IoT module A unit #8 of 8 13 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

pinMode(buttonPin, INPUT_PULLUP); Using the pull-up (internal) resistor

if (button != LOW) The != means not. If the button is not
LOW (pressed)…

IoT module A unit #8 of 9 13 www.elegantAI.org

http://www.elegantAI.org

In this sketch, we are doing more than just switching it on and off with
the button, but toggling it so that on one press the LED is on and on the
next press of the button the LED switches off. This is more difficult than
the previous sketch. Hold the button for a second each time.

❗ this works very badly because of a condition known as bounce (we will
look at that in the next sketch).

Sketch A8.2 LED toggle

int ledPin = 2;

int buttonPin = 5;

int ledState = LOW;

int lastButtonState = HIGH;

int currentButtonState = HIGH;

void setup()

{

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin, INPUT_PULLUP);

 currentButtonState = digitalRead(buttonPin);

}

void loop()

{

 lastButtonState = currentButtonState;

 currentButtonState = digitalRead(buttonPin);

 if(lastButtonState == LOW && currentButtonState == HIGH)

 {

 ledState = !ledState;

 digitalWrite(ledPin, ledState);

 }

}

IoT module A unit #8 of 10 13 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Work through the sketch to follow the logic; the logic isn’t flawed, but the
button is. The problem is that the contacts, as you press the button, jump
or bounce and give false readings. The next sketch addresses this problem
by taking into account the bounce.

IoT module A unit #8 of 11 13 www.elegantAI.org

http://www.elegantAI.org

I recommend starting a new sketch; too many changes to highlight. To
tackle the bounce problem, we need to introduce some sort of delay to
counter that. We will call that debounceDelay.

Sketch A8.3 debounce

int ledPin = 2;

int buttonPin = 5;

int ledState = LOW;

int buttonState = LOW;

int lastButtonState = LOW;

int currentButtonState = LOW;

long lastDebounceTime = 0;

long debounceDelay = 50;

void setup()

{

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin, INPUT_PULLUP);

 digitalWrite(ledPin, ledState);

}

void loop()

{

 currentButtonState = digitalRead(buttonPin);

 if (currentButtonState != lastButtonState)

 {

 lastDebounceTime = millis();

 }

 if ((millis() - lastDebounceTime) > debounceDelay)

 {

 if (currentButtonState != buttonState)

IoT module A unit #8 of 12 13 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

This is more about Boolean logic than the code. But all that code is just to
toggle an LED on or off. This is what coding is all about: problem solving.
This is a workaround for a hardware issue.

🛠 Code Explanation

 {

 buttonState = currentButtonState;

 if (buttonState == HIGH)

 {

 ledState = !ledState;

 }

 }

 }

 digitalWrite(ledPin, ledState);

 lastButtonState = currentButtonState;

}

long lastDebounceTime = 0; These two lines of code are the key to this
working, they have to be long because they use
the millis() function and the number can get big
very quickly.

long debounceDelay = 50;

Serial.available() gets the number of bytes (characters) available
from reading the serial port

Serial.setTimeout() sets the maximum milliseconds to wait for serial
data

Serial.parseInt() returns the first integer number

Serial.Read() reads incoming serial data

IoT module A unit #8 of 13 13 www.elegantAI.org

http://www.elegantAI.org

