Artificial
Intelligence
information
a gentle
overview

i<t Content

Introduction to ml5.js
Adding ml5.js

The index.html file

The ml5.js neural network
The task in hand

The debug tool

The Datasets

The callback() function

The Hyperparameters
Epochs

The size of the batch

The hidden layers

How many neurons?
Activation functions

The Sigmoid activation function
The RelLU activation function
The ml5.js functions
Overfitting v underfitting

Introduction to ml5.js

2 of 24

www.elegantAl.org

¥ Introduction to ml5.js

In this section, we will be introducing:
the ml5.js neural network

$ tasks

the Debug tool

the datasets

the callback() function

As well as changing various hyperparameters:

Epochs

F Batch Size

F Hidden Layers

$ Number of Nodes (Neurons)
$ Activation functions

Introduce the key functions within ml5.js:
.addData()

.normalizeData()

.train()

predict()

.classify()

.save()

Jload()

B EBEEFEBEFEFBEFE

Introduction to ml5.js 3 of 24

www.elegantAl.org

% Guide to adding ml5.js

We will be building some neural networks. The beauty of modern machine
learning is that you dont have to build the neural network from scratch.
We will be using a library called ml5.js, which is based on TensorFlow. This
means that much of the heavy lifting is already done for you. Even so,
there is so much to learn, experiment with, and develop, so dont think it is
a complete doddle; you still need to know what you are doing.

The units you will work through will provide opportunities to build your
neural network for a variety of tasks. They are all fun activities, but they
are good learning opportunities as well. They will introduce you to some
key concepts and deepen your understanding of the possibilities and
limitations of machine learning.

To get started, we need to import the ml5.js library, and to do so, you
need to follow the next steps carefully to include the line of code needed
in the index.html. If you want to, I will give you the starting sketch for
you to duplicate and save (see the button on my website).

Introduction to ml5.js 4 of 24 www.elegantAlorg

STEP the arrow

There is a grey arrow on the top left-hand side (as indicated in the image
below). Click on that arrow to bring up a list of files. You will see
index.html, sketch.js, and style.css.

Figure 1: finding the index.html file

m File w Editw Sketchwv Help v English w
> Auto-refresh mli5js # by TheHappyCoder
> sketch.js Saved: just now Preview
1 function setup()
2v|{
3
4 }
5
6 function draw()
7v/{
8
9 3
10

Introduction to ml5.js 5 of 24 www.elegantAl.org

STEP [the index file

Find the file that is called index.html and click on it. Once you have
selected the index.html file, you can close the menu by clicking on the
grey arrow again. Then grab the side of the coding section and drag it so
that the code fills your screen.

Figure 2: found the index.html file

—m File w Editw Sketchw Help v Englishw
’ o Auto-refresh ml5js # by TheHappyCoder

Sketch Files + < indexhtml

8 dndex-html ¥ 1 1 <1poCTYPE html>

JSsKetcn. Js 27 <html lang="en">

B style.css 3 <head>.
4 <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/1.11.1
5 <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/1.11.1
6 <script src="https://unpkg.com/ml5@1/dist/ml5.min. js"></script>
7 <link rel="stylesheet" type="text/css" href="style.css">
8 <meta charset="utf-8" />
9
10 </head>
11 <body>
12 <main>
13 </main>
14 <script src="sketch.js"></script>
15 </body>
16 </html>
17

Introduction to ml5.js 6 of 24 www.elegantAl.org

STEP ml5.js line of code

Finally, type in the line of code exactly as below, which will allow your
browser to access the module.

<script src="https://unpkg.com/ml5@l/dist/ml5.min.js"></script>

Then go back to sketch.js by clicking on it in the side tab and the arrow
to exit the list of files. Hopefully, you typed everything in OK. You will find
out in due course.

Figure 3: adding ml5.js

'Autofrefresh ml5js # by TheHappyCoder
< index.html
1 <!DOCTYPE html>
27 <html lang="en">
3 <head>
4 <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/1.11.1/p5.js"></scrip
5 Sseript sre="hitpns-//cdnds claudflare com/adax/14bs/08 49/1 11 1/addons/p5.soun
6 <script src="https://unpkg.com/ml5@1/dist/ml5.min. js"></script>
7
8 <meta charset="utf-8" />
9
10 </head>
11 <body>
12 <main>
13 </main>
14 <script src="sketch.js"></script>
115 </body>
16 </html>
17

Introduction to ml5.js 7 of 24 www.elegantAl.org

¥ The index.html file

The new line of code can slot in anywhere inside the <head> tags, along
with the other similar lines of code.

<!DOCTYPE html>
<html lang="en">
<head>

<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.11.1/p5.js"></script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.11.1/addons/p5.sound.min. js"></script>

<script src="https://unpkg.com/ml5@1/dist/ml5.min.js"></
script>

<link rel="stylesheet" type="text/css" href="style.css">

<meta charset="utf-8" />

</head>
<body>
<main>
</main>
<script src="sketch.js"></script>
</body>
</html>

Introduction fo ml5.js 8 of 24 www.elegantAl.org

¥ The ml5.js neural network

We are going to be working with the default settings in ml5.js. I have
provided the default settings for information; dont worry if you dont know
what they mean, all will become clear as we go along.

The default setup for an ml5.js model for regression is:
% Hidden layers: 1

Hidden layer activation function: relu

Number of nodes: 16

% Output layer: sigmoid

For classification, it is the following:
F Hidden layers: 1

% Hidden layer activation function: relu
F Number of nodes: 16

% Output layer: softmax

Other default settings:
% Learning rate: 0.2
F Batch size: 32

% Epochs: 10

Introduction fo ml5.js 9 of 24 www.elegantAl.org

% The task in hand

The type of task has to be identified first. This is so that you know what
type of model you are going to use. There are primarily two main types:
classification and regression. You need to decide which one it is
going to be; this is your first job and tell that to ml5.js.

Although the neural network is almost identical for both tasks, the output
gives the game away. The neural network will be predicting an output; if
that is to classify something, for instance, an image of a dog, then it is a
classification task. If the prediction is a value which can change, for
instance, the price of a house, then it is a regression task.

F Classification

An example could be sorting images of different animals, say, cats and
dogs. The model will be trained on thousands of images of cats and dogs,
each image labelled accordingly. Once trained, the model will then be
shown an image of a cat or dog and will predict the likelihood
(probability) that it is a cat or a dog. There will be two outputs: one, the
probability of it being a cat, and two, the probability of it being a dog.

F Regression

This usually only has one output. It will be a value, say, the price of a
house, or predicting the femperature, or the price of a cryptocurrency.
This will be a value that can have a range of values and once trained it
predicts what it thinks it will be; this is based on the inputs. In the case
of a house price, the inputs may include the number of bedrooms, garage
or not, size of garden, number of toilets, distance from a school or train
station and so on based on historical dafta.

Introduction fo ml5.js 10 of 24 www.elegantAl.org

¢ The debug tool

The debug tfool is very useful but not essential. You activate it by calling it
true and deactivate it by calling it false or not having it at all. It tells
you how well the training is going on each epoch; it is a measure of the
loss (error, cost, or difference between its predicted output and the real
output). There is a hide button, which, if you click on it, will remove it when

finished.

Also, if you move your mouse over the chart, you will get the actual value
of the loss at any point on the chart.

Figure 4: debug and loss function

Maximize Hide
Visor
Training Performance
onEpochEnd
0.06 — loss
0.05-
0.04
S
3 0.03
0.02
0.01+
0.00 T T T T T T T 1
0 1 2 3 4 5 6 8 9
Epoch
Model Summary
Layer Name Output Shape # Of Params Trainable
dense_Dense1 [batch,16] 32 true
dense_Dense2 [batch,1] 17 true
Introduction to ml5.js 11 of 24

www.elegantAl.org

% The Datasets

Mostly, we will be using what can be called synthetic data, which means it
is not real data; it is artificially created. Synthetic data is also used in
addition to real data when training models, especially in the case where
there is too little data or it is too expensive to collect and label the dafta.
It might sound like cheating, but done well, it is very effective and cost-
efficient.

What you want is as much real data as possible. If it is images, then tens
of thousands will be needed for the model to be able to train on them
with some accuracy. This, as you can imagine, is very expensive as each
image needs to be labelled, a very laborious task. People are employed to
do just that and other similar data preparations.

It can be easy to just focus on the neural network architecture and the
training phase, but the quality as well as the quantity of data is just as
important. For instance, if you are doing facial recognition, but all your data
is based on white, male, middle-aged faces, the model will have an
inherent bias which may not be obvious until it is deployed at a later date
when it struggles with non-white or female faces (this did happen). This
was also true of accents in voice recognition software in the early days.

The trouble is identifying potential issues when there are fens of
thousands of bits of data, so just be aware and dont take the data for
granted. Check it out, test the model well before deploying it or using it
for real.

Introduction fo ml5.js 12 of 24 www.elegantAl.org

& The callback() function

Even though we havent started coding yet, I want to mention the callback
function. When we run a particular function in ml5.js, we often
incorporate what is called a callback function. This can be simply fo let us
know when something has finished, or it could carry data such as the
predicted results. Callbacks can also be used to check for errors. We will
use them quite frequently, even though they are often optional. Their job is
to call a function inside another function.

Introduction fo ml5.js 13 of 24 www.elegantAl.org

¥ The Hyperparameters

These are the parameters that you can fiddle around with to get the best
results. Although we can use the default settings and they will probably
be OK for some situations, they are unlikely to offer the best solution.
Knowing what each hyperparameter does is a skill you will need to
develop. Experience will help you develop those skills, another reason for
this tutorial, fo get a feel for them. The main hyperparameters you will be
using are listed below. If you were a data scientist, then you would have
even more hyperparameters to play with, but you would also have huge,
messy datasets, but thankfully, we will be using simple and relatively small
datasets.

Training Hyperparameters
¥ Epochs
$ Batch Size

Model Architecture Hyperparameters
Hidden Layers

F Nodes (Neurons)

Activation functions

I will give you a brief description for each of these hyperparameters, but
they will become more apparent when you actually start changing them.
There is an element of trial and error, but after a while, you get a feel
for what works well. Usually, the ml5.js default settings arent far off the
mark. All the above functions are options available during either the
training phase or when initially designing the neural network.

Introduction to ml5.js 14 of 24 www.elegantAlorg

The epoch is usually the first hyperparameter you change, and it is the
easiest to understand. In machine learning, an epoch refers to one
complete pass through the entire training dataset. It's a fundamental
concept in training neural networks. Here's a breakdown of what happens
during an epoch:

() The entire training dataset is fed into the model. This dataset contains
the examples the model will learn from.

@ The model processes each data point and updates its internal
parameters based on the errors it makes in its predictions. These
parameters (called the weights) are like the knobs and dials of the
model that determine its behaviour.

&) Once all data points have been processed, one epoch is complete.

It's important fo note that multiple epochs are typically needed to train a
model effectively. With each epoch, the model gets better at recognising
patterns and making accurate predictions. However, there's a sweet spot:
too few epochs and the model won't learn enough, while too many epochs
can lead to overfitting, where the model memorises the training data too
well and performs poorly on unseen data.

The number of epochs is called a hyperparameter, meaning it's a setting
that needs to be tuned to find the best performance. The default is 10; we
could increase it to, say, 250 or more, but that may be a waste of time as
there is very little learning affer a certain point. That is why the loss
function chart is so helpful, as you can see where the training is giving
diminishing returns.

Introduction to ml5.js 15 of 24 www.elegantAlorg

¥ The size of the batch

This is the second of the hyperparameters that we will tackle, and it is
an important one even if it seems a bit nebulous.

Batch size is a term used in machine learning to describe the number
of samples that are used fo update the weights of a machine learning
model in one iteration. For example, if you have a dataset of 100 samples
and you set the batch size to 10, the model will update the weights
after processing 10 samples. The model will repeat this process until all
the samples in the dataset are processed.

This is another hyperparameter that you can change. Through a bit of
trial and error, you will get a feel for which batch size yields the best
results for a specific timeframe. You could send it all through in one go (an
epoch size) or send one at a time, but the ideal will be a compromise
somewhere in between. Smaller batch sizes also require less memory as
they dont have to process a large amount of data each time.

The default batch size for ml5.js (as far as I can gather) is 32.

Choosing the batch size is trial and error. Although you can specify any
size, it is usual fo try values of: 8, 16, 32, 64, 128, 256, etc.

Introduction fo ml5.js 16 of 24 www.elegantAl.org

"% The hidden layers

The hidden layers are sandwiched between the input layer and the
output layer. It is another hyperparameter which you can command. The
number of hidden layers has a profound impact; however, I would caution
against going overboard with lots of layers to start with; it can slow the
training because of the number of calculations.

This is where much of the magic happens, though actually no one is sure
what is actually happening here, which may seem a bit strange. This has
been one of the issues surrounding machine learning; it is the black box
syndrome. A neural network has all those layers and nodes, with randomly
generated weights, tweaking them as it learns from the data provided; this
part is a bit of a mystery. The machine sets all these weights, and there
can be thousands of them all working fogether.

Each hidden layer extracts features from the data passed through it.
As it passes through all the layers, more and more complex features are
identified. A bit like a series of filters, each one building on the previous, it
filters out irrelevant information. This is what makes neural networks so
powerful.

Having multiple hidden layers means it can tackle non-linear problems.
These are the more complex patterns and problems that arent simple
linear (straight line) relationships. The world is rarely linear.

An example might be recognising cats or dogs. The first layer will look for
corners, edges (e.g. tails, ears, whiskers) or colours. The next layer will
identify patterns in the coats, and the next will find other subtle
differences. Some of these features will not be obvious to us until it finally
makes the prediction if it is a cat or a dog in the final output layer.

In ml5.js, the default is one hidden layer, but as you will see, we can (and
will) add more hidden layers. But more, as you will find out, is not always
better. Next, we can decide how many nodes we want for each hidden
layer.

Introduction to ml5.js 17 of 24 www.elegantAlorg

¥ How many nodes (neurons)?

The input layer, to be precise, isnt usually called a layer. The number of
nodes (neurons) is fixed by the input data, and this is also true for the
output layer. The hidden layer(s) can have as many nodes as you want to
give them. So, surely the more the merrier, maybe, we will see.

The default is one hidden layer and it is given 16 nodes (neurons or
units to use their jargon). This is a very good starting point. You can give
it fewer or more. If you have more than one hidden layer, you dont even
need to have the same number of nodes in each. Again, it is something to
play around with to get a feel for what works, or doesnt work, or seems
to make little or no difference.

Each node has an activation function, and an extra node is added
called the bias node. The bias node just makes sure that there is
always a value being introduced so that it never collapses to zero, which
cannot be trained. This is created automatically, but I thought it was
worth mentioning.

Introduction fo ml5.js 18 of 24 www.elegantAl.org

<k Activation functions

There are quite a few activation functions. But there are two
common functions used, and we will explore them to start with. There are
many more that can and are used. Those who work in research are
exploring ways to make neural networks better and more efficient. They
explore different architectures and functions to achieve better results, but
we will keep it simple for this tutorial.

The default activation function in the hidden layer nodes is what is called
the ReLU function. In the recent past, the Sigmoid function was the
popular one, but that was costly in terms of calculation and was a poor
performer compared to the ReLU function.

Introduction fo ml5.js 19 of 24 www.elegantAl.org

& The Sigmoid activation function

To start with, we will look at the Sigmoid function. It inputs any value
(x-axis) and the output will be between O and 1; however, you can see that
any values close to 5 are effectively 1 and -5 effectively 0.

This is great and works well, but it is computationally heavy; it takes a lot
of working out, and if you have thousands of nodes each with their own
sigmoid activation functions, then this can fake the training a long time. If
you want outputs between -1 and 1, then you can use a variation of the
sigmoid called tanh.

Figure 5: Sigmoid

1.0

0.5

Introduction fo ml5.js 20 of 24 www.elegantAl.org

¥ The RelLU activation function

To improve the efficiency of neural networks, they looked at alternatives
to the Sigmoid function that worked better and more efficiently. They
came up with the ReLU function, which looks almost foo simple for it fo
work well, and yet it does. This is especially true in a deep neural network
(DNN), which has many hidden layers and nodes.

It works very efficiently and yields excellent results. It works so simply:
any x value less than zero, the output is zero; any value greater than zero,
the output is the same as the input.

A problem can arise sometimes if the input is exactly zero. Getting a zero
output is not ideal and can cause problems for the network; hence, there
are variations on this, one of which is called leakyRelLU, which is quite
similar.

Figure 6: RelLU

10

Introduction fo ml5.js 21 of 24 www.elegantAl.org

¥ The ml5.js functions

For this tutforial, we call our model nn for no other reason than for
simplicity. We have functions we can call to perform a particular action.
The format is the name of the model, in this case nn, followed by a dot
(.) and the function we are calling. Inside the brackets is the information
or data we are actioning and also where we might put a callback()
function.

nn.addData()
We use this to add the data to the neural network.

¥ nn.normalizeData()

This normalises the data, taking it from a wide range of values and
squashing them, in proportion between O and 1.

F nn.train()

We call this function when we are ready to train the model on the data
added. Here, we can include options for the number of epochs and the
batch size.

F nn.predict()

Once it is trained, we can put in some data to predict the outcome; this is
used with regression tasks. It uses sigmoid and then scales up the
predicted value.

F nn.classify()
This is used to make the classification prediction; it uses the softfmax
function (o pick the highest probability).

nn.save()

We can save the model once we have trained it and tested it. It is saved in
three files. These files will contain the necessary information
(hyperparameter settings and weights) to run it again.

Introduction fo ml5.js 22 of 24 www.elegantAl.org

nn.load()

This will load the three files that make up the model and make it available
to predict or classify.

Introduction fo ml5.js 23 of 24 www.elegantAl.org

<k Overfitting and underfitting

Overfitting is where the model performs well in the training but fails tfo
generalise the learning when you use new data. It has learned the
correlation between the inputs and outputs too well. It has memorised the
data, not recognised its patterns.

Underfitting, on the other hand, is the opposite. It becomes obvious when
the model is too simple and cannot create a relationship between the input
and the output, and so hasnt recognised any strong patterns.

This is why you usually have your data split three ways. Firstly, you use
80% for training, 10% for validation, where you fine-tune your
hyperparameters. Then the remaining 10% is where you test the model to
check if there is any overfitting or underfitting. For the tutorial, we will
be using training data only and then predicting. This is for simplicity.

In the real world of machine learning models, you would have the three
datasets. Also, it is important that for all three datasets, they are
representative of the whole dataset. To do that, you take a random sample
and not just creamed off the last 10% or 20% of the total dataset. It is
important that the three datasets are equally representative of the total
dataset.

Introduction fo ml5.js 24 of 24 www.elegantAl.org

