Artificial
Intelligence
Module A
Unit #2
linear
regression

Module A Unit #2 linear regression with ml5.js

Introduction to linear regression

The index.html file

Sketch A2.1 index.html

Sketch A2.2 initial sketch with data points
Sketch A2.3 sketch revised

Sketch A2.4 revising the data

Sketch A2.5 adding the model

Sketch A2.6 adding the data

Sketch A2.7 training on the data
Sketch A2.8 predicting the result
Sketch A2.9 the callback function
Sketch A2.10 batch size

Sketch A2.11 increasing the batch size
Sketch A2.12 an alternative ending

AI module A unit #2 2 of 46 www.elegantai.org

http://www.elegantai.org

¢ Introduction to linear regression with ml5.js

In simple terms, we are going to use the data points for a straight line. We
will use this dataset to train the model. It will then predict the
relationship between x and y of a simple straight line (linear). We will be
drawing the prediction so we have a visual result to see how well it has
performed.

This may seem like a rather simple exercise, but it will serve as a
demonstration of how a machine learning neural network will learn,
demonstrating its usefulness and also its limitations. To make it a bit more
realistic and challenging, we are going to introduce a bit of variance; what
this means is adding some randomness to the data.

This is because real-world data is very rarely so neat and tidy. Machine
learning (AI) comes into its own when patterns arent necessarily so
obvious. This becomes even more so when there is a lot of data, with many
variables, and the usual strategies or algorithms would struggle.

Here we have two variables. The X and the Yy co-ordinates. The equation
for a lineis y = mx + b. The m is the slope of the line, and the b is
where it intercepts the y-axis. We artificially create the data and add in
the variance. This is synthetic data; it isnt real data seen in the world,
but it will serve the purpose.

We train the model on this data and get the model to predict a line
through the data. Its prediction is the generalisation (or best guess) of the
data. The beauty of this exercise is that we can play around with a
number of hyperparameters, such as the number of hidden layers, the
number of nodes (in each layer), the activation function, the learning rate,
the optimiser, the batch size, and of course, the epochs.

AI module A unit #2 3 of 46 www.elegantai.org

http://www.elegantai.org

<% Backend Stuff

To speed up, or even make it work at all, depending on your machine or
browser, you may need to have one of the following lines of code:

ml5.setBackend("webgl")
ml5.setBackend("cpu")

By default, we are going to add webgl to make sure that it works across
all browsers. You can add cpu instead; it might work very much faster if
you do, but, however, it might affect the programme depending on your
machine and browser. Other alternatives are gpu or webgpu. Just
experiment at a later date to get a better performance.

AI module A unit #2 4 of 46 www.elegantai.org

http://www.elegantai.org

% Introducing ml5.js

In the unit a gentle overview of ml5.js I showed you how to add
the line of code into the index.html file. This is important; otherwise, there
is no neural network to train the model. So, if you have not read through
that section, it is important that you do so, or you can duplicate the
template I have provided on my website by clicking on the button, and
then come back to this unit.

AI module A unit #2 5 of 46 www.elegantai.org

http://www.elegantai.org

% The index.html file

The line of code needs to be added to the index.html file before you do
anything else.

@ if you swap to version 2 you will have slightly different index.html, it

will show you the p5.js library as 2.1.x but there will not be any sound
library. As far as I know it might be incorporated into the new version.

<!DOCTYPE html>
<html lang="en">

<head>

<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.11.0/p5.js"></script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.11.0/addons/p5.sound.min. js"></script>

<script src="https://unpkg.com/ml5@l/dist/ml5.min.js"></
script>

<link rel="stylesheet" type="text/css" href="style.css">
<meta charset="utf-8" />

</head>
<body>
<main>
</main>
<script src="sketch.js"></script>
</body>
</html>

AI module A unit #2 6 of 46 www.elegantai.org

http://www.elegantai.org

<k Sketch A2.1 starting sketch

This is our starting sketfch.

function setup()

{
createCanvas (400, 400)

function draw()

{
background(220)

AI module A unit #2 7 of 46 www.elegantai.org

http://www.elegantai.org

-k Sketch A2.2 drawing the points on a line

We create a for() loop to draw each data point as a blue circle. We
space them out by 10 pixels.

function setup()

{
createCanvas (400, 400)

function draw()

{
background(220)
for (let 1 = 0; i < width; 1 += 10)
{
fill(e, 0, 255)
circle(i, height - i, 5)
¥
b
", Notes

For each value of i, this will be the X co-ordinate of the circle; the
height-i is the y co-ordinate. Simply, this is a straight line where y =
X, and the slope m is effectively 1 and the intercept b is 0.

a4

‘X Code Explanation

: Adding 10 each iteration of the for loop, this increases the
i+= 10 .
value of i by 10

AI module A unit #2 8 of 46 www.elegantai.org

http://www.elegantai.org

Figure A2.2

> sketchjs

function setup()
{

createCanvas(400, 400)
3

function draw()
{
background(220)
9 for (let i = 0; i < width; i += 10)
10 {
11 fill(e, 0, 255)
12 circle(i, height - i, 5)
13 }
14 %

Console

Hello, TheHappyCoder! v

Saved:1 minute ago Preview

Clear Vv

AI module A unit #2

9 of 46 www.elegantai.org

http://www.elegantai.org

- Sketch A2.2 initial sketch with data points

We want to draw 30 circles, one on top of the other. Hence, we introduce
a constant (const) variable called number. In the next part, we will
spread those 30 circles randomly around the line with some variance
(spread).

const number = 30
function setup()

{
createCanvas (400, 400)

function draw()

{
background(220)
for (let 1 = 0; 1 < width; 1 += 10)
{
for (let j = 0; j < number; j++)
{
fill(e, o, 255)
circle(i, height - i, 5)
+
¥
¥
", Notes

Now we are drawing 30 circles for each data point. We use j as the
variable for the nested loop.

- Sketch A2.3 sketch revised

AI module A unit #2 10 of 46 www.elegantai.org

http://www.elegantai.org

Now we are going to spread the data points using the variable spread.
You will notice that it draws the circles repeatedly in random points.

30

const spread = 30

const number

function setup()

{
createCanvas (400, 400)

function draw()

{
background(220)
for (let 1 = 0; 1 < width; 1 += 10)
{
for (let j = 0; j < number; j++)
{

fill(e, o, 255)

circle(i + random(-spread, spread), height - i + random(-
spread, spread), 5)

¥

We dont want the circles being drawn continuously; we will address the
issue in the next sketch.

AI module A unit #2 11 of 46 www.elegantai.org

http://www.elegantai.org

K Code Explanation

random(-spread, spread) Gives us a random value between -30 and +30

This means that for every i (x) value we move it

i + random(-spread, spread) above or below the real value.

AI module A unit #2 12 of 46 www.elegantai.org

http://www.elegantai.org

<k Sketch A2.4 revising the data

To stop it looping through, we change the name of the draw() function to
trainingData(). This means it is no longer a continuous loop. We move
background(220) into the setup() function and call the
trainingData() function there. Now it draws the data points just once
every time you run the sketch, but not continually as before.

const number = 30
30

const spread

function setup()

{
createCanvas (400, 400)
background(220)

trainingDatal()

function trainingDatal()
{
// background(220)
for (let 1 = 0; 1 < width; 1 += 10)
{
for (let j = 0; j < number; j++)
{
fill(e, o, 255)

circle(i + random(-spread, spread), height - i + random(-
spread, spread), 5)

by

........

AI module A unit #2 13 of 46 www.elegantai.org

http://www.elegantai.org

This may sound complicated, but it is just a little bit of refactoring. The
training data is called just once in setup(). This will become evident later
as we dont want to be creating new data as we train.

I Remove the background(220) from the trainingData() function.

AI module A unit #2 14 of 46 www.elegantai.org

http://www.elegantai.org

Figure A2.4

m File v Edit v Sketch v Help v English wv Hello, TheHappyCoder! v

° . Auto—refresh mlSjs # by TheHappyCoder c
> sketch.js® Saved: about 2 hours ago Preview
5v|{
6 createCanvas (400, 400)
7 background(220)
8 trainingData()
9 |}
10
11 function trainingData()
12v|{
13 for (let i = 0; i < width; i += 10)
14y, {
15 for (let j = @; j < number; j++)
16 {
17 fill(e, o, 255)
18 circle(i + random(-spread, spread), height - i +
random(-spread, spread), 5)
19 3
20 3
21 %}
Console Clear VvV

AI module A unit #2 15 of 46 www.elegantai.org

http://www.elegantai.org

& Sketch A2.5 adding the model

We are going to call our neural network nn. This may not sound very
creative, but it makes sense. We then call the ml5.js library, and
specifically, we are using the neural network. This is because we are
building our own model rather than a pre-trained one.

let nn
const number = 30
const spread = 30

function setup()

{
createCanvas (400, 400)
background(220)
nn = ml5.neuralNetwork()

trainingDatal()

function trainingData()

{
background(220)
for (let 1 = 0; i < width; i += 10)
{
for (let j = 0; j < number; j++)
{

fill(e, 0, 255)

circle(i + random(-spread, spread), height - i + random(-
spread, spread), 5)

........

AI module A unit #2 16 of 46 www.elegantai.org

http://www.elegantai.org

Nothing is meant to happen; all we have done is call the neural network
library ml5.js. This is why we need it in the index.html file.

K Code Explanation

let nn Naming the neural network model

Calling or assigning the ml5 neural network to the

nn = ml5.neuralNetwork()
nn model name

AI module A unit #2 17 of 46 www.elegantai.org

http://www.elegantai.org

k: Sketch A2.5 adding the model

We have initialised the model and now we have to give it some options.
This is information the model needs. First off, we have to decide what kind
of task we want it to do; in this case, it is a regression task because
we want it to output a value y that varies based on the X input.

The second option is something called debug: what this does is draw the
loss as a graph/chart so we can see the loss values visually. You dont have
to use this, but it is handy to see what progress the model is making as it
is training. To see the graph, you set debug: true; alternatively, set it to
false.

We have the options object as a const so that we dont change any of
the parameters. We then call the options inside ml5. As mentioned in the
introduction, we have added webgl to the backend to help with the
training process.

AI module A unit #2 18 of 46 www.elegantai.org

http://www.elegantai.org

let nn
30
30

const options = {

const number

const spread

task: 'regression',

debug: true

function setup()

{
createCanvas (400, 400)
background(220)
ml5.setBackend("webgl")
nn = ml5.neuralNetwork(options)

trainingDatal()

function trainingDatal()
{
background(220)
for (let 1 = 0; 1 < width; 1 += 10)
{
for (let j = 0; j < number; j++)
{
fill(e, o, 255)

circle(i + random(-spread, spread), height - i + random(-

spread, spread), 5)
}

Hith

AI module A unit #2 19 of 46

www.elegantai.org

http://www.elegantai.org

Adding this code wont make any difference yet. If you get any errors,
make sure you have typed everything in correctly and also that you have
the ml5.js line of code in the index.html correctly written.

® Challenge

If your machine will accept it, then try: ml5.setBackend("cpu") for
faster training.

¢ Code Explanation

This creates an object of options we can

LI CEel LS use with ml5.js

Using the rendering that is most

ml5.setBackend("webgl") :
appropriate

nn = ml5.neuralNetwork(options) Adding the options to the neural network

AI module A unit #2 20 of 46 www.elegantai.org

http://www.elegantai.org

¢ Sketch A2.6 adding the data

What the model needs is the data; therefore, we need to change a number
of things. We need to collect all those data points into the data variable.
So the variable data now cycles through all the X and y values. The data
is now an array of those X and Yy values. We then draw the circle to the
data.x, which is data[@], and data.y is datal[1].

let nn

let data

const number = 30
const spread = 30

const options = {
task: 'regression',

debug: true

function setup()

{
createCanvas (400, 400)
ml5.setBackend("webgl")
nn = ml5.neuralNetwork(options)

trainingDatal()

function trainingDatal()

{
background(220)
for (let 1 = 0; i < width; 1 += 10)
{
for (let j = @; j < number; j++)
{

data = [i + floor(random(-spread, spread)), height - i +
floor(random(-spread, spread))]

AI module A unit #2 21 of 46 www.elegantai.org

http://www.elegantai.org

fill(e, @, 255)
circle(datal[@Q], datall], 5)

We still draw the data points as before, but the code is looking quite
different now. Try to follow what the code is doing.

K Code Explanation

We use floor so that we get whole

1 + floor{random{-spread, spread)) numbers (integers) not floats.

The circle data[0] is the x value, the

circle(datal@], datalll, 5) data[l] the y value.

AI module A unit #2 22 of 46 www.elegantai.org

http://www.elegantai.org

¢ Sketch A2.6 adding the data

We are going to add this data to the neural network. To do this, we use
the addData() function. After the data has been added, we need to
normalise the data with the normalizeData() function. This transforms
the data to between -1 and +1. The console.log() will let us know
when that has been completed.

let nn

let data

const number = 30
const spread = 30

const options = {
task: 'regression',

debug: true

function setup()

{
createCanvas (400, 400)
ml5.setBackend("webgl")
nn = ml5.neuralNetwork(options)
trainingDatal()
nn.normalizeData()

console. log('done"')

function trainingDatal()

{
background(220)
for (let 1 = 0; 1 < width; 1 += 10)
{
for (let j = 0; j < number; j++)
{

AI module A unit #2 23 of 46 www.elegantai.org

http://www.elegantai.org

data = [i + floor(random(-spread, spread)), height - i +
floor(random(-spread, spread))]

fill(e, @, 255)
circle(datal@], datall]l, 5)
nn.addData([data[@]], [datall]ll])

We have passed the data into the model; next, we need to train the model
on that data.

X Code Explanation
nn.normalizeDatal() This normalises the data
console. log('done") Let us know when it is all done

nn.addData([data[@]], [data[l]]) This adds the data to the nn model

AI module A unit #2 24 of 46 www.elegantai.org

http://www.elegantai.org

Figure A2.6

m File v Edit v Sketch v Help v English wv

Hello, TheHappyCoder! v

° . Auto-refresh mlSjs # by TheHappyCoder Q

> sketch.js Saved: 15 seconds ago Preview
17 console.log('done")
18 %}
19
20 function trainingData()
21V|{
22 background(220)
23 for (let i = 0; i < width; i += 10)
24 {
25 for (let j = 0; j < number; j++)
26
27 data = [i + floor(random(-spread, spread)),

height - i + floor(random(-spread, spread))]
28 fill(o, 0, 255)
29 circle(datal[0], datal[1], 5)
30 nn.addData([data[0]], [data[1]1)
31 >
32 3}
33 [}

Console Clear WV
done
AI module A unit #2 25 of 46 www.elegantai.org

http://www.elegantai.org

& Sketch A2.7 training on the data

To train the model, we use the train() function. We are going to train
the model on the data we have normalised. We add a callback function in
the train() function called finishedTraining() so that when the
training is complete, it will let us know. Here, the loss graph Kicks into
action, and you will notice that it stops training after about ften epochs.

let nn

let data

const number = 30
const spread = 30

const options = {
task: 'regression',

debug: true

function setup()

{
createCanvas (400, 400)
ml5.setBackend("webgl")
nn = ml5.neuralNetwork(options)
trainingDatal()
nn.normalizeData()
nn.train(finishedTraining)

console. log('done")

function trainingDatal()

{
background(220)
for (let 1 = 0; i < width; 1 += 10)
{

for (let j = 0; j < number; j++)

AI module A unit #2 26 of 46 www.elegantai.org

http://www.elegantai.org

data = [i + floor(random(-spread, spread)), height - i +
floor(random(-spread, spread))]

fill(e, 0, 255)

noStroke()

circle(datal[0], datalll, 5)
nn.addData([data[@]], [datalll]l)

function finishedTraining()

{

console.log('finished")
b
~, Notes

When the loss graph has finished, you can remove it by clicking on the
Hide button, so that you can see the canvas (if your screen is small). In
the console, we get done and finished after the training is completed.
The default settings are for 10 epochs, and there are 16 nodes (neurons) in
the hidden layer. It automatically works out the number of nodes for the
input and output. Notice it makes reference to Dense 1 and Dense 2. This is
the hidden layer and the output layer. The input layer is not considered a
layer. Dense means fully connected.

X Code Explanation

Trains the model and when finished calls

e the function finishedTraining()

AI module A unit #2 27 of 46 www.elegantai.org

http://www.elegantai.org

Figure A2.7

m File w Editw Sketchw Help v English v Hello, TheHappyCoder! v

° - Auto-refresh ml5js & by TheHappyCoder #
> sketch.js® Saved: about 2 hours ago Preview
MES
12 createCanvas(400, 400) onEpochEnd
13 ml5.setBackend("webgl") —
14 nn = ml5.neuralNetwork(options) 0012 s
15 trainingData()
16 nn.normalizeData() 0.010+
17 nn.train(finishedTraining)
18 console.log('done") 0008
19 |} 2
20 EO,OOGf
21 function trainingData() 0004
22v|{
23 background(220) 0.002 |
24 for (let i = 0; i < width; i += 10)
25 { 0.000 T T T T T T T T 1
26 for (let j = @; j < number; j++) ° ‘ T eeen ° ! Pl
27 {
28 data = [i + floor(random(-spread, spread)),
[P N TP c | POV Sy A S, S O Model Summary
Console Clear WV
done Layer Name Output Shape # Of Params Trainable
finished dense_Dense1 [batch,16] 32 true
dense_Dense2 [batch,1] 17 true

AI module A unit #2 28 of 46 www.elegantai.org

http://www.elegantai.org

¢k Sketch A2.8 predicting the result

We need to predict the result after the training is complete. We do this
using the predict() function. This will be very telling as it is going to
draw an approximation of the data. In theory, it should be a straight line
where y = X drawn from the bottom left corner to the top right corner
on the canvas, but we will see.

I Remove the console.log()s, they were there just to check it

worked. We will set debug: to false so you can see the line being drawn
(better still, just remove it completely).

In the finishedTraining() function, we use the counter as an array;
this is the X value. The callback function gotResults() will draw the
predicted result for y for each X input. We only want 400 because that is
the number of pixels in the width of the canvas.

let nn

let counter = 0

let data
const number = 30
const spread = 30

const options = {
task: 'regression’,

debug: false

function setup()

{
createCanvas (400, 400)
ml5.setBackend("webgl")
nn = ml5.neuralNetwork(options)
trainingDatal()
nn.normalizeData()

nn.train(finishedTraining)

AI module A unit #2 29 of 46 www.elegantai.org

http://www.elegantai.org

function trainingDatal()

{
background(220)
for (let 1 = 0; 1 < width; 1 += 10)
{
for (let j = @; j < number; j++)
{

data = [i + floor(random(-spread, spread)), height - i +
floor(random(-spread, spread))]

fill(e, o, 255)

noStroke()

circle(datal@], datall], 5)
nn.addData([data[@]], [datal[1]ll)

function finishedTraining()

{
if (counter < 400)
{
nn.predict([counter], gotResults)
b
b

AI module A unit #2 30 of 46 www.elegantai.org

http://www.elegantai.org

Hit

. Notes

If you run this, you will get an error message because we havent created
the gotResults() function just yet. We will need to advance the
counter in the gotResults() function by one on each iteration (see next
sketch).

X Code Explanation

This takes the x value (counter), predicts
nn.predict([counter], gotResults) the result and passes to the callback
function gotResults()

AI module A unit #2 31 of 46 www.elegantai.org

http://www.elegantai.org

<& Sketch A2.9 the callback function

Next, we add the gotResults() callback function. The prediction is the
first element in the array, which will be a value of y for a particular input
of X (from the counter). We draw a point at that value and move onto
the next. We add one to the counter and return to the
finishedTraining() function for the next prediction.

let nn

let counter = 0

let data
const number = 30
const spread = 30

const options = {
task: 'regression',

debug: false

function setup()

{
createCanvas (400, 400)
ml5.setBackend("webgl")
nn = ml5.neuralNetwork(options)
trainingDatal()
nn.normalizeData()

nn.train(finishedTraining)

function trainingDatal()

{
background(220)
for (let 1 = 0; i < width; 1 += 10)
{

for (let j = @; j < number; j++)

AI module A unit #2 32 of 46 www.elegantai.org

http://www.elegantai.org

data = [i + floor(random(-spread, spread)), height - i +

floor(random(-spread, spread))]
fill(e, 0, 255)
noStroke()
circle(datale@], datalll, 5)
nn.addData([data[@]], [datal1]])

function finishedTraining()
{

if (counter < 400)

{

nn.predict([counter], gotResults)

function gotResults(results)
{
let prediction = results[0]
let x = counter
let y = prediction.value
stroke(255, 0, 0)
strokeWeight(5)
point(x, y)
counter++

finishedTraining()

AI module A unit #2 33 of 46

www.elegantai.org

http://www.elegantai.org

The results is an argument that is an array of objects, actually one
object at a time, for each x (counter) value. What you may get is a
wonky line at the start and finish. This is most likely because we have
some negative values when we create the variance of the data points.

® Challenges

1. Use console.log(results) to see what it is returning (see second image
below)

2. We could fill an array with values and work through each element one
at a time

X Code Explanation

The prediction variable takes all the data in the

let prediction = results[0] eI I——

Gives the counter value to the x co-ordinate of

let x counter

the line
L This takes the value part of the object element.
let y = prediction.value .
This is the actual y value
counter++ Adding one to the counter

Then finally return to the finishedTraining()
finishedTraining() function to get the next value based on the
next counter (x) value

AI module A unit #2 34 of 46 www.elegantai.org

http://www.elegantai.org

Figure A2.9a

m File v Edit v Sketch v Help v English v

387 {
39
40
41
42
43 }
44

467 {
47
48
49
50
51
52
53
54
55 [}

Console

° . Auto-refresh ml5js # by TheHappyCoder

) sketch.js Saved: just now
3/ Tunction tinishedlraining()

if (counter < 400)
{

nn.predict([counter], gotResults)
3

45 function gotResults(results)

let prediction = results[0]
let x = counter

let y = prediction.value
stroke(255, 0, 0)
strokeWeight(5)

point(x, y)

counter++
finishedTraining()

Clear VvV

Hello, TheHappyCoder! v

Preview

AI module A unit #2

35 of 46 www.elegantai.org

http://www.elegantai.org

Figure A2.9b with console. log(results) and
the value is the actual predicted value for the canvas

m File v Editw Sketchw Help v English v Hello, TheHappyCoder! v

° . Auto-refresh ml5js # by TheHappyCoder a

> sketch,js® Saved: 8 minutes ago Preview

45 function gotResults(results)
467 {

47 console.log(results)

48 let prediction = results[0]

49 let x = counter

50 let y = prediction.value

1 ctralal(dEE 0 0

Console Clear WV

P \1/ LuMjLLL

» (1) [Object]

v (1) [Object]
V0: Object
0: 39.40953977406025
label: "0"
value: 39.40953977406025
unNormalizedValue: 0.1323152333498001

» (1) [Object]
» (1) [Object]
» (1) [Object]
» (1) [Object]
» (1) [Object]

AT module A unit #2 36 of 46 www.elegantai.org

http://www.elegantai.org

= Sketch A2.10 batch size

The batch size is how much data we send through in one go. We could
send it through one at a time or all of it in one go. A large batch size
is usually faster but potentially less accurate. Whereas a smaller batch
size takes longer but may give overall better results. We are going to
give the train() function some options, which is where we specify the
batch size. Our dataset is around 2400 data points, but first we will
try a batch size of 1 and see what happens.

let nn

let counter = 0

let data
const number = 30
const spread = 30

const options = {
task: 'regression',

debug: true

function setup()

{
createCanvas (400, 400)
ml5.setBackend("webgl")
nn = ml5.neuralNetwork(options)
trainingDatal()
nn.normalizeData()
const trainingOptions = {

batchSize: 1

b

nn.train(trainingOptions, finishedTraining)

function trainingDatal()

AI module A unit #2 37 of 46 www.elegantai.org

http://www.elegantai.org

background(220)
for (let 1 = 0; 1 < width; 1 += 10)
{

for (let j = @; j < number; j++)

{

data = [i + floor(random(-spread, spread)), height - i +
floor(random(-spread, spread))]

fill(e, @, 255)
noStroke()
circle(datal@], datal1], 5)

nn.addData([data[@]], [datall]ll])

function finishedTraining()

{

if (counter < 400)
{

nn.predict([counter], gotResults)

function gotResults(results)

{

let prediction = results[0]
let x = counter

let y = prediction.value
stroke(255, @, 0)
strokeWeight(5)

point(x, y)

counter++

AI module A unit #2 38 of 46

www.elegantai.org

http://www.elegantai.org

finishedTraining()

The results speak for themselves. We need to consider a larger
batchSize than 1. We could go to the other extreme (all the dataset)
and see what happens then.

® Challenge
Try other values of batch size

X Code Explanation

const trainingOptions = { Create a permanent object for our training

options
batchSize: 1 Specify the batch size
nn.train(trainingOptions, Add the training options to the train()
finishedTraining) function

AI module A unit #2 39 of 46 www.elegantai.org

http://www.elegantai.org

Figure A2.10a Our loss chart looks woeful

m File w Editw Sketchw Help v English v Hello, TheHappyCoder! v
° - Auto—refresh ml5js & by TheHappyCoder Q
""" BB cechiss T e 7minutesago Preview T

5 aeoug: tTrue
9 } Maximize Hide

10
11 function setup() Visor
12v({
13 createCanvas(400, 400)
14 ml5.setBackend("cpu") Training Performance
15 nn = ml5.neuralNetwork(options)
16 trainingData() onEpochEnd
17 nn.normalizeData() — N
18 const trainingOptions = { 0.07- o
19 batchSize: 1
20 3} o.oe—w
21 nn.train(trainingOptions, finishedTraining) C oosd
22 console.log() ¢ oi
23 |} g;q o 004
24 Fgﬂ §o.03—
25 function trainingData()
267 { 0.02
Console Clear WV 0.01-

0.00 T T T T T T T T d

0 1 2 3 4 5 6 7 8 9
Epoch
AI module A unit #2 40 of 46 www.elegantai.org

http://www.elegantai.org

Figure A2.10b the results look woeful also

m File v Editw Sketch v Help v English v

3

9
10
11
12
18
14
15
16
17
18
19
20
21
22
23
24

Console

° - Auto-refresh mi5js # by TheHappyCoder

sketch.js® Saved: 8 minutes ago

}

aepug: true

function setup()

{

}

createCanvas(400, 400)
ml5.setBackend("cpu")
nn = ml5.neuralNetwork(options)
trainingData()
nn.normalizeData()
const trainingOptions = {

batchSize: 1
3
nn.train(trainingOptions, finishedTraining)
console.log()

25 function trainingData()
267 {

Clear Vv

Hello, TheHappyCoder! v

Preview

AI module A unit #2

41 of 46 www.elegantai.org

http://www.elegantai.org

& Sketch A2.11 increasing the batch size

Batch sizes are often in the order 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and
so on. You can have any batch size you want, though. You often notice the

difference instantly.
I Keep this code for the next unit

let nn

let counter = 0

let data
const number = 30
const spread = 30

const options = {
task: 'regression’,

debug: true

function setup()

{
createCanvas (400, 400)
ml5.setBackend("webgl")
nn = ml5.neuralNetwork(options)
trainingDatal()
nn.normalizeData()
const trainingOptions = {

batchSize: 512

¥

nn.train(trainingOptions, finishedTraining)

function trainingDatal()

{
background(220)

AI module A unit #2 42 of 46

www.elegantai.org

http://www.elegantai.org

for (let 1 = 0; i < width; i += 10)
{
for (let j = @; j < number; j++)
{

data = [i + floor(random(-spread, spread)), height - i +
floor(random(-spread, spread))]

fill(e, o, 255)

noStroke()

circle(datal@], datalll, 5)
nn.addData([data[@]], [datal1]ll)

function finishedTraining()

{
if (counter < 400)
{
nn.predict([counter], gotResults)
¥
¥

function gotResults(results)

{
let prediction = results[0]

let x = counter

let y = prediction.value
stroke(255, 0, 0)
strokeWeight(5)

point(x, vy)

counter++

finishedTraining()

AI module A unit #2 43 of 46 www.elegantai.org

http://www.elegantai.org

Hit

, Notes
We get a better loss curve and better results, still a bit skewed at the
ends. The results are far more consistent.

! Remember to keep this code for: module A unit #3 sine wave
regression

#® Challenge

1
elw

Try other batch sizes

AI module A unit #2 44 of 46 www.elegantai.org

http://www.elegantai.org

Figure A2.11a loss much better

m File w Editw Sketchw Help v English v Hello, TheHappyCoder! v
° . Auto-refresh mlSjs # by TheHappyCoder c
""" > skewhis® Saed2minuwsago Preview
15 nn = r_nlS.neuralNetwork(options) I —

16 trainingData()
17 nn.normalizeData()
18 const trainingOptions = { Visor
19 batchSize: 512
20 % N
21 nn.train(trainingOptions, finishedTraining) Training Performance
22 '}
23 onEpochEnd
24 function trainingData()
25 { 0.045+ — loss
26 background(220) 0.040-
27 for (let i = 0; i < width; i += 10) 0,035
28 { a4
29 for (let j = 0; j < number; j++) I
30 { 20,0257
31 data = [i + floor(random(-spread, 1 # 0020

spread)), height - i + floor(random(-spread, 0.015-

spread))] o010
Console Clear WV

0.005 -
0.000 T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9
Epoch

AI module A unit #2 45 of 46 www.elegantai.org

http://www.elegantai.org

Figure A2.11b and better results

m)

ilew Editw Sketchw Help v English v

Hello, TheHappyCoder! v

° . Auto-refresh mlSjs # by TheHappyCoder Q
> sketchjs Saved: just now Preview
15 nn = ml5.neuralNetwork(options)
16 trainingData()
17 nn.normalizeData()
18 const trainingOptions = {
19 batchSize: 512
20 %
21 nn.train(trainingOptions, finishedTraining)
22 '}
23
24 function trainingData()
25v|{
26 background(220)
27 for (let i = 0; i < width; i += 10)
287 {
29 for (let j = 0; j < number; j++)
30 {
31 data = [i + floor(random(-spread,
spread)), height - i + floor(random(-spread,
spread))]
Console Clear WV
AT module A unit #2 46 of 46 www.elegantai.org

http://www.elegantai.org

