
Artificial
Intelligence

Module A

Unit #3

sine wave
regression

Module A Unit #3 sine wave regression

Introduction to sine wave regression

The index.html file

Sketch A3.1 sine wave sketch

Sketch A3.2 epochs

Sketch A3.3 layers

Sketch A3.4 more hidden layers

Sketch A3.5 more nodes

Sketch A3.6 learning rate

Sketch A3.7 always a bit of trial and error

Activation functions

Sketch A3.8 changing the activation function

Final challenges

Summary

Content

AI module A unit #3 of 2 49 www.elegantAI.org

http://www.elegantAI.org

In the previous unit, we trained a model to predict a straight line and had
a peek at the batch size hyperparameter. This time, we are going to make
things a bit more challenging. We are going to upgrade from a straight line
to a sine wave.

This will give us a chance to look at some more hyperparameters and their
impact on the training of the model. We will use them to try to make
better predictions of a sine wave.

The hyperparameters we will be looking at will be:

🀄 Number of hidden layers

🀄 Number of nodes in each layer

🀄 Activation functions

🀄 Epochs

🀄 Learning Rate

Introduction to sine wave regression with ml5.js

AI module A unit #3 of 3 49 www.elegantAI.org

http://www.elegantAI.org

Make sure that you have the ml5.js line of code in your index.html
file.

The index.html

<!DOCTYPE html>

<html lang="en">

 <head>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.11.0/p5.js"></script>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.11.0/addons/p5.sound.min.js"></script>

 <script src="https://unpkg.com/ml5@1/dist/ml5.min.js"></
script>

 <link rel="stylesheet" type="text/css" href="style.css">

 <meta charset="utf-8" />

 </head>

 <body>

 <main>

 </main>

 <script src="sketch.js"></script>

 </body>

</html>

AI module A unit #3 of 4 49 www.elegantAI.org

http://www.elegantAI.org

We are starting with the sketch from linear regression. Then we’ll modify
the data because instead of a line, we want a sine wave. In p5.js, the
default angle units are radians, but we are going to work in degrees, which
is a little more intuitive. To make this change, we use the function
angleMode() in setup(). Everything else in the sketch remains the
same.

Sketch A3.1 sine wave sketch

let nn

let counter = 0

let data

const number = 30

const spread = 30

const options = {

 task: 'regression',

 debug: true

}

function setup()

{

 createCanvas(400, 400)

 angleMode(DEGREES)

 ml5.setBackend("webgl")

 nn = ml5.neuralNetwork(options)

 trainingData()

 nn.normalizeData()

 const trainingOptions = {

 batchSize: 512

 }

 nn.train(trainingOptions, finishedTraining)

}

function trainingData()

AI module A unit #3 of 5 49 www.elegantAI.org

http://www.elegantAI.org

{

 background(220)

 for (let i = 0; i < width; i += 10)

 {

 for (let j = 0; j < number; j++)

 {

 data = [i + floor(random(-spread, spread)), 200 + (50 *
sin(i) + floor(random(-spread, spread)))]

 fill(0, 0, 255)

 noStroke()

 circle(data[0], data[1], 5)

 nn.addData([data[0]], [data[1]])

 }

 }

}

function finishedTraining()

{

 if (counter < 400)

 {

 nn.predict([counter], gotResults)

 }

}

function gotResults(results)

{

 let prediction = results[0]

 let x = counter

 let y = prediction.value

 stroke(255, 0, 0)

 strokeWeight(5)

 point(x, y)

 counter++

AI module A unit #3 of 6 49 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

For every x input, we get the sine of that input as our y output. We
multiply by 50 to increase the amplitude (otherwise a very flat sine wave)
and move it by 200 pixels so we have it in the centre of the canvas, plus
the usual variance, random(spread). The results aren’t as bad as you
might expect, as it uses default settings for most of the hyperparameters
except for the batch size.

🛠 Code Explanation

 finishedTraining()

}

angleMode(DEGREES) This changes the default to degrees (notice all capitals)

sin(i) Returns the sine of i

AI module A unit #3 of 7 49 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #3 of 8 49 www.elegantAI.org

Figure A3.1a loss chart

http://www.elegantAI.org

AI module A unit #3 of 9 49 www.elegantAI.org

Figure A3.1b predicted results

http://www.elegantAI.org

Our first hyperparameter change will be the number of epochs. Each
epoch is one complete dataset. Currently, we are only running 10 epochs,
and it looks as if the loss might still be going down after that. Let’s extend
it to 100 epochs and see where it levels off (or stops learning). We can
introduce this hyperparameter into the training options just like we did
with the batch sizes.

❗ You will need to put a comma (,) after the 512.

Sketch A3.2 epochs

let nn

let counter = 0

let data

const number = 30

const spread = 30

const options = {

 task: 'regression',

 debug: true

}

function setup()

{

 createCanvas(400, 400)

 angleMode(DEGREES)

 ml5.setBackend("webgl")

 nn = ml5.neuralNetwork(options)

 trainingData()

 nn.normalizeData()

 const trainingOptions = {

 batchSize: 512,

 epochs:100

 }

 nn.train(trainingOptions, finishedTraining)

AI module A unit #3 of 10 49 www.elegantAI.org

http://www.elegantAI.org

}

function trainingData()

{

 background(220)

 for (let i = 0; i < width; i += 10)

 {

 for (let j = 0; j < number; j++)

 {

 data = [i + floor(random(-spread, spread)), 200 + (50 *
sin(i) + floor(random(-spread, spread)))]

 fill(0, 0, 255)

 noStroke()

 circle(data[0], data[1], 5)

 nn.addData([data[0]], [data[1]])

 }

 }

}

function finishedTraining()

{

 if (counter < 400)

 {

 nn.predict([counter], gotResults)

 }

}

function gotResults(results)

{

 let prediction = results[0]

 let x = counter

 let y = prediction.value

 stroke(255, 0, 0)

AI module A unit #3 of 11 49 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

The changes were not a great improvement. You may get slightly different
results depending on how the weights are initialised in the model, but it
seems to level out after around 10 epochs.

🌻 Challenge

Try again with different epoch settings.

🛠 Code Explanation

 strokeWeight(5)

 point(x, y)

 counter++

 finishedTraining()

}

epochs:100 Defines how many epochs if not using the default value

AI module A unit #3 of 12 49 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #3 of 13 49 www.elegantAI.org

Figure A3.2

http://www.elegantAI.org

AI module A unit #3 of 14 49 www.elegantAI.org

Figure A3.2

http://www.elegantAI.org

We can add more layers; more accurately, we can add more hidden layers.
In those layers, we can specify the number of nodes and the activation
function we want to use. The default settings are shown below:

🀄 Input Layer

One input node

🀄 Output Layer

One output node

🀄 Hidden Layer

By default, we have one hidden layer with 16 nodes.

🀄 Dense

Means all the nodes in one layer are fully connected to the node in the
previous layer.

🀄 Activation Functions

In the hidden layer, they are the ReLU function, and for the output layer,
it is the sigmoid function.

Sketch A3.3 layers

let nn

let counter = 0

let data

const number = 30

const spread = 30

const options = {

 task: 'regression',

 layers: [

 {

 type: 'dense',

 units: 16,

 activation: 'relu'

AI module A unit #3 of 15 49 www.elegantAI.org

http://www.elegantAI.org

 },

 {

 type: 'dense',

 activation: 'sigmoid'

 }

],

 debug: true

}

function setup()

{

 createCanvas(400, 400)

 angleMode(DEGREES)

 ml5.setBackend("webgl")

 nn = ml5.neuralNetwork(options)

 trainingData()

 nn.normalizeData()

 const trainingOptions = {

 batchSize: 512,

 epochs:100

 }

 nn.train(trainingOptions, finishedTraining)

}

function trainingData()

{

 background(220)

 for (let i = 0; i < width; i += 10)

 {

 for (let j = 0; j < number; j++)

 {

 data = [i + floor(random(-spread, spread)), 200 + (50 *
sin(i) + floor(random(-spread, spread)))]

AI module A unit #3 of 16 49 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

As you can see, it has made no difference, which is really as expected. If
you get a better (or worse) result, just remember that it is starting each
time with different (random) weights as well as random data.

 fill(0, 0, 255)

 noStroke()

 circle(data[0], data[1], 5)

 nn.addData([data[0]], [data[1]])

 }

 }

}

function finishedTraining()

{

 if (counter < 400)

 {

 nn.predict([counter], gotResults)

 }

}

function gotResults(results)

{

 let prediction = results[0]

 let x = counter

 let y = prediction.value

 stroke(255, 0, 0)

 strokeWeight(5)

 point(x, y)

 counter++

 finishedTraining()

}

AI module A unit #3 of 17 49 www.elegantAI.org

http://www.elegantAI.org

🌻 Challenge

You might want to start changing the number of nodes in the hidden layer.

🛠 Code Explanation

layers: [...] Adding layers in the training option

type: 'dense' Fully connected nodes between each layer

units: 16 16 nodes (neurons) in the hidden layer

activation: 'relu' Hidden layer activation function

activation: 'sigmoid' Output layer activation function

AI module A unit #3 of 18 49 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #3 of 19 49 www.elegantAI.org

Figure A3.3a

http://www.elegantAI.org

AI module A unit #3 of 20 49 www.elegantAI.org

Figure A3.3b

http://www.elegantAI.org

Added two more identical hidden layers.

Sketch A3.4 more hidden layers

let nn

let counter = 0

let data

const number = 30

const spread = 30

const options = {

 task: 'regression',

 layers: [

 {

 type: 'dense',

 units: 16,

 activation: 'relu'

 },

 {

 type: 'dense',

 units: 16,

 activation: 'relu'

 },

 {

 type: 'dense',

 units: 16,

 activation: 'relu'

 },

 {

 type: 'dense',

 activation: 'sigmoid'

 }

],

 debug: true

AI module A unit #3 of 21 49 www.elegantAI.org

http://www.elegantAI.org

}

function setup()

{

 createCanvas(400, 400)

 angleMode(DEGREES)

 ml5.setBackend("webgl")

 nn = ml5.neuralNetwork(options)

 trainingData()

 nn.normalizeData()

 const trainingOptions = {

 batchSize: 512,

 epochs:100

 }

 nn.train(trainingOptions, finishedTraining)

}

function trainingData()

{

 background(220)

 for (let i = 0; i < width; i += 10)

 {

 for (let j = 0; j < number; j++)

 {

 data = [i + floor(random(-spread, spread)), 200 + (50 *
sin(i) + floor(random(-spread, spread)))]

 fill(0, 0, 255)

 noStroke()

 circle(data[0], data[1], 5)

 nn.addData([data[0]], [data[1]])

 }

 }

}

AI module A unit #3 of 22 49 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

You can see in my example the beginnings of a sine wave, but far from
what we might want.

function finishedTraining()

{

 if (counter < 400)

 {

 nn.predict([counter], gotResults)

 }

}

function gotResults(results)

{

 let prediction = results[0]

 let x = counter

 let y = prediction.value

 stroke(255, 0, 0)

 strokeWeight(5)

 point(x, y)

 counter++

 finishedTraining()

}

AI module A unit #3 of 23 49 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #3 of 24 49 www.elegantAI.org

Figure A3.4a

http://www.elegantAI.org

AI module A unit #3 of 25 49 www.elegantAI.org

Figure A3.4b

http://www.elegantAI.org

Increasing the number of nodes, they don’t have to be equal for each
hidden layer; it is worth trying mixing it up a bit to see what happens.

Sketch A3.5 more nodes

let nn

let counter = 0

let data

const number = 30

const spread = 30

const options = {

 task: 'regression',

 layers: [

 {

 type: 'dense',

 units: 64,

 activation: 'relu'

 },

 {

 type: 'dense',

 units: 64,

 activation: 'relu'

 },

 {

 type: 'dense',

 units: 64,

 activation: 'relu'

 },

 {

 type: 'dense',

 activation: 'sigmoid'

 }

],

AI module A unit #3 of 26 49 www.elegantAI.org

http://www.elegantAI.org

 debug: true

}

function setup()

{

 createCanvas(400, 400)

 angleMode(DEGREES)

 ml5.setBackend("webgl")

 nn = ml5.neuralNetwork(options)

 trainingData()

 nn.normalizeData()

 const trainingOptions = {

 batchSize: 512,

 epochs:100

 }

 nn.train(trainingOptions, finishedTraining)

}

function trainingData()

{

 background(220)

 for (let i = 0; i < width; i += 10)

 {

 for (let j = 0; j < number; j++)

 {

 data = [i + floor(random(-spread, spread)), 200 + (50 *
sin(i) + floor(random(-spread, spread)))]

 fill(0, 0, 255)

 noStroke()

 circle(data[0], data[1], 5)

 nn.addData([data[0]], [data[1]])

 }

 }

AI module A unit #3 of 27 49 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

You can see the pattern emerging, but it is still less than satisfactory.

🌻 Challenge

Think about more/fewer nodes, more/fewer layers.

}

function finishedTraining()

{

 if (counter < 400)

 {

 nn.predict([counter], gotResults)

 }

}

function gotResults(results)

{

 let prediction = results[0]

 let x = counter

 let y = prediction.value

 stroke(255, 0, 0)

 strokeWeight(5)

 point(x, y)

 counter++

 finishedTraining()

}

AI module A unit #3 of 28 49 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #3 of 29 49 www.elegantAI.org

Figure A3.5a

http://www.elegantAI.org

AI module A unit #3 of 30 49 www.elegantAI.org

Figure A3.5b

http://www.elegantAI.org

Another hyperparameter we can change is the learning rate. The
learningRate is the size of steps the algorithm takes to find the lowest
point in the calculations. If the steps are too big, they can miss the global
minimum; too small, and it can never find the minimum and gets stuck on a
local minimum. We are keeping the number of layers and nodes the same
as in the previous sketch.

Sketch A3.6 learning rate

let nn

let counter = 0

let data

const number = 30

const spread = 30

const options = {

 task: 'regression',

 learningRate: 0.1,

 layers: [

 {

 type: 'dense',

 units: 64,

 activation: 'relu'

 },

 {

 type: 'dense',

 units: 64,

 activation: 'relu'

 },

 {

 type: 'dense',

 units: 64,

 activation: 'relu'

 },

 {

AI module A unit #3 of 31 49 www.elegantAI.org

http://www.elegantAI.org

 type: 'dense',

 activation: 'sigmoid'

 }

],

 debug: true

}

function setup()

{

 createCanvas(400, 400)

 angleMode(DEGREES)

 ml5.setBackend("webgl")

 nn = ml5.neuralNetwork(options)

 trainingData()

 nn.normalizeData()

 const trainingOptions = {

 batchSize: 512,

 epochs:100

 }

 nn.train(trainingOptions, finishedTraining)

}

function trainingData()

{

 background(220)

 for (let i = 0; i < width; i += 10)

 {

 for (let j = 0; j < number; j++)

 {

 data = [i + floor(random(-spread, spread)), 200 + (50 *
sin(i) + floor(random(-spread, spread)))]

 fill(0, 0, 255)

 noStroke()

AI module A unit #3 of 32 49 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Not a significant difference, but the loss function is very jumpy.

🌻 Challenge

I could fiddle with these values endlessly, and that is why machine learning
is an art as much as a science. I will let you play around, perhaps trying
learning rates of 1 or 0.001, more nodes but fewer hidden layers.

 circle(data[0], data[1], 5)

 nn.addData([data[0]], [data[1]])

 }

 }

}

function finishedTraining()

{

 if (counter < 400)

 {

 nn.predict([counter], gotResults)

 }

}

function gotResults(results)

{

 let prediction = results[0]

 let x = counter

 let y = prediction.value

 stroke(255, 0, 0)

 strokeWeight(5)

 point(x, y)

 counter++

 finishedTraining()

}

AI module A unit #3 of 33 49 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

learningRate: 0.1 We can specify the learning rate, the steps (or

jumps) in the training process

AI module A unit #3 of 34 49 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #3 of 35 49 www.elegantAI.org

Figure A3.6a

http://www.elegantAI.org

AI module A unit #3 of 36 49 www.elegantAI.org

Figure A3.6b

http://www.elegantAI.org

I have increased the number of nodes but reduced the number of layers,
as well as reduced the learning rate to 0.01.

Sketch A3.7 always a bit of trial and error

let nn

let counter = 0

let data

const number = 30

const spread = 30

const options = {

 task: 'regression',

 learningRate: 0.01,

 layers: [

 {

 type: 'dense',

 units: 256,

 activation: 'relu'

 },

 {

 type: 'dense',

 units: 256,

 activation: 'relu'

 },

 {

 type: 'dense',

 activation: 'sigmoid'

 }

],

 debug: true

}

function setup()

AI module A unit #3 of 37 49 www.elegantAI.org

http://www.elegantAI.org

{

 createCanvas(400, 400)

 angleMode(DEGREES)

 ml5.setBackend("webgl")

 nn = ml5.neuralNetwork(options)

 trainingData()

 nn.normalizeData()

 const trainingOptions = {

 batchSize: 512,

 epochs:100

 }

 nn.train(trainingOptions, finishedTraining)

}

function trainingData()

{

 background(220)

 for (let i = 0; i < width; i += 10)

 {

 for (let j = 0; j < number; j++)

 {

 data = [i + floor(random(-spread, spread)), 200 + (50 *
sin(i) + floor(random(-spread, spread)))]

 fill(0, 0, 255)

 noStroke()

 circle(data[0], data[1], 5)

 nn.addData([data[0]], [data[1]])

 }

 }

}

function finishedTraining()

{

AI module A unit #3 of 38 49 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Starting to see some improvements. Bear in mind, however, that every time
you run the code, we are using different data (not saved or uploaded), but
this is for ease of use and demonstration purposes.

🌻 Challenge

Play around with the number of nodes and the learning rate,
consider saving the data in the first place, and then experimenting with
the hyperparameters.

 if (counter < 400)

 {

 nn.predict([counter], gotResults)

 }

}

function gotResults(results)

{

 let prediction = results[0]

 let x = counter

 let y = prediction.value

 stroke(255, 0, 0)

 strokeWeight(5)

 point(x, y)

 counter++

 finishedTraining()

}

AI module A unit #3 of 39 49 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #3 of 40 49 www.elegantAI.org

Figure A3.7a

http://www.elegantAI.org

AI module A unit #3 of 41 49 www.elegantAI.org

Figure A3.7b

http://www.elegantAI.org

The final hyperparameter we are going to look at is the activation
functions. The default for a regression task is hidden layer: ReLU and
output layer: Sigmoid.

Just to save on space, I will not change any other lines of code except the
options for layers, so the rest of the code remains the same and is omitted
for brevity.

Activation functions

AI module A unit #3 of 42 49 www.elegantAI.org

http://www.elegantAI.org

Using the same hyperparameters, we will switch the ReLU to sigmoid.

Sketch A3.8 changing the activation function

let nn

let counter = 0

let data

const number = 30

const spread = 30

const options = {

 task: 'regression',

 learningRate: 0.01,

 layers: [

 {

 type: 'dense',

 units: 256,

 activation: 'sigmoid'

 },

 {

 type: 'dense',

 units: 256,

 activation: 'sigmoid'

 },

 {

 type: 'dense',

 activation: 'sigmoid'

 }

],

 debug: true

}

function setup()

{

AI module A unit #3 of 43 49 www.elegantAI.org

http://www.elegantAI.org

 createCanvas(400, 400)

 angleMode(DEGREES)

 ml5.setBackend("webgl")

 nn = ml5.neuralNetwork(options)

 trainingData()

 nn.normalizeData()

 const trainingOptions = {

 batchSize: 512,

 epochs:100

 }

 nn.train(trainingOptions, finishedTraining)

 console.log()

}

function trainingData()

{

 background(220)

 for (let i = 0; i < width; i += 10)

 {

 for (let j = 0; j < number; j++)

 {

 data = [i + floor(random(-spread, spread)), 200 + (50 *
sin(i) + floor(random(-spread, spread)))]

 fill(0, 0, 255)

 noStroke()

 circle(data[0], data[1], 5)

 nn.addData([data[0]], [data[1]])

 }

 }

}

function finishedTraining()

{

AI module A unit #3 of 44 49 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Oh, dear! ReLU gives consistently better results. It is more efficient and is
the industry standard. You could see if you can get better results with
fewer or more layers and nodes. I will leave that with you to experiment.

🌻 Challenge

Use tanh instead of sigmoid.

 if (counter < 400)

 {

 nn.predict([counter], gotResults)

 }

}

function gotResults(results)

{

 let prediction = results[0]

 let x = counter

 let y = prediction.value

 stroke(255, 0, 0)

 strokeWeight(5)

 point(x, y)

 counter++

 finishedTraining()

}

AI module A unit #3 of 45 49 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #3 of 46 49 www.elegantAI.org

Figure A3.8a

http://www.elegantAI.org

AI module A unit #3 of 47 49 www.elegantAI.org

Figure A3.8b

http://www.elegantAI.org

We have looked at the following hyperparameters:

🀄 Batch size

🀄 Epochs

🀄 Hidden layers

🀄 Nodes

🀄 Activation functions

🀄 Learning rate

I would strongly recommend playing with all of these and seeing how they
impact the model’s learning. Remember that you will never get a perfect
result. Also, try drawing the sine wave as a single line rather than a
scatter graph approach as we did with the linear regression.

Final challenges

AI module A unit #3 of 48 49 www.elegantAI.org

http://www.elegantAI.org

You will probably start to realise that throwing more nodes and hidden
layers at the dataset doesn’t necessarily improve the outcome. You may
also realise that having a smaller learning rate and a smaller batch
size may give you some slightly improved outcome, but you may have to
wait a considerably longer time. Remember, in the real world, time and
energy are money.

Summary

AI module A unit #3 of 49 49 www.elegantAI.org

http://www.elegantAI.org

