Artifcial
Intelligence
Module A
Unit #3
sine wave
regression




Module A Unit #3 sine wave regression

Introduction to sine wave regression
The index.html file

Sketch A3.1
Sketch A3.2
Sketch A3.3
Sketch A3.4
Sketch A3.5
Sketch A3.6
Sketch A3.7

sine wave sketch

epochs

layers

more hidden layers

more nodes

learning rate

always a bit of trial and error

Activation functions

Sketch A3.8

Final challenges

Summary

AI module A unit #3

changing the activation function

2 of 49

www.elegantAlorg


http://www.elegantAI.org

¢ Introduction to sine wave regression with ml5.js

In the previous unit, we trained a model to predict a straight line and had
a peek at the batch size hyperparameter. This time, we are going to make
things a bit more challenging. We are going to upgrade from a straight line
to a sine wave.

This will give us a chance to look at some more hyperparameters and their
impact on the training of the model. We will use them to ftry to make
better predictions of a sine wave.

The hyperparameters we will be looking at will be:
# Number of hidden layers

# Number of nodes in each layer

% Activation functions

# Epochs

# Learning Rate

AI module A unit #3 3 of 49 www.elegantAl.org


http://www.elegantAI.org

¥ The index.html

Make sure that you have the ml5.js line of code in your index.html
file.

<!DOCTYPE html>
<html lang="en">
<head>

<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.11.0/p5.js"></script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.11.0/addons/p5.sound.min. js"></script>

<script src="https://unpkg.com/ml5@l/dist/ml5.min.js"></
script>

<link rel="stylesheet" type="text/css" href="style.css">

<meta charset="utf-8" />

</head>
<body>
<main>
</main>
<script src="sketch.js"></script>
</body>
</html>

AI module A unit #3 4 of 49 www.elegantAlorg


http://www.elegantAI.org

- Sketch A3.1 sine wave sketch

We are starting with the sketch from linear regression. Then we'll modify
the data because instead of a line, we want a sine wave. In p5.js, the
default angle units are radians, but we are going to work in degrees, which
is a little more intuitive. To make this change, we use the function
angleMode() in setup(). Everything else in the sketch remains the
same.

let nn

let counter = 0

let data
const number = 30
const spread = 30

const options = {

task: 'regression',

debug: true

function setup()

{

createCanvas (400, 400)

angleMode (DEGREES)

ml5.setBackend("webgl")

nn = ml5.neuralNetwork(options)

trainingDatal()

nn.normalizeData()

const trainingOptions = {
batchSize: 512

¥

nn.train(trainingOptions, finishedTraining)

function trainingDatal()

AI module A unit #3 5 of 49

www.elegantAl.org


http://www.elegantAI.org

background(220)

for (let 1 = 0; 1 < width; 1 += 10)

{

for (let j = @0; j < number; j++)

{

data = [i + floor(random(-spread, spread)), 200 + (50 x

sin(i) + floor(random(-spread, spread)))]

fill(e, @, 255)
noStroke()

circle(datal@], datal1], 5)

nn.addData( [datal0@]],

function finishedTraining()

{
if (counter < 400)

{

[datal1]])

nn.predict([counter], gotResults)

function gotResults(results)

{

let prediction = results[0]

let x = counter

let y = prediction.value
stroke(255, @, 0)
strokeWeight(5)

point(x, y)

counter++

AI module A unit #3

6 of 49

www.elegantAl.org


http://www.elegantAI.org

finishedTraining()

For every X input, we get the sine of that input as our y output. We
multiply by 50 to increase the amplitude (otherwise a very flat sine wave)
and move it by 200 pixels so we have it in the centre of the canvas, plus
the usual variance, random(spread). The results arent as bad as you
might expect, as it uses default settings for most of the hyperparameters
except for the batch size.

K Code Explanation
angleMode (DEGREES) This changes the default o degrees (notice all capitals)

sin(i) Returns the sine of i

AI module A unit #3 7 of 49 www.elegantAlorg


http://www.elegantAI.org

Figure A3.1a loss chart

m File w Editwv Sketch v Help v English v Hello, TheHappyCoder! v

) sketch.js® Saved: about 3 hours ago Preview

a2v/{ Maximize Hide
43 if (counter < 400)

447 { i

45 nn.predict([counter], gotResults) Visor

46 }

47 %}

48 Training Performance

49 function gotResults(results)
507 {
51 let prediction = results[0]

R
e @

. onEpochEnd

52 let x = counter 006 — loss
53 let y = prediction.value 005
54 stroke(255, 0, 0) )
55  strokeWeight(5) 004
56 point(x, y)
57 counter++ 2 003
58 finishedTraining() z
59 } 0.02-
Console Clear WV
0.01
0.00 T T T T T T T T d
0 1 2 3 4 5 6 7 8 9

AI module A unit #3 8 of 49 www.elegantAl.org


http://www.elegantAI.org

Figure A3.1b predicted

results

Hello, TheHappyCoder! v

° - Auto-refresh ml5js & by TheHappyCoder Q
> sketch,js® Saved: about 3 hours ago Preview
427 {
43 if (counter < 400)
447 {
45 nn.predict([counter], gotResults)
46}
47 3
48
49 function gotResults(results)
507 {
51 let prediction = results[0]
59 let x = counter
53 let y = prediction.value
54 stroke(255, 0, 0)
55 strokeWeight(5)
56 point(x, y)
57 counter++
58 finishedTraining()
59 }

Console Clear WV

AT module A unit #3 9 of 49 www.elegantAl.org


http://www.elegantAI.org

«k Sketch A3.2 epochs

Our first hyperparameter change will be the number of epochs. Each
epoch is one complete dataset. Currently, we are only running 10 epochs,
and it looks as if the loss might still be going down after that. Lets extend
it to 100 epochs and see where it levels off (or stops learning). We can
introduce this hyperparameter into the training options just like we did
with the batch sizes.

! You will need to put a comma (,) after the 512.

let nn
let counter = 0
let data

const number

30
30

const options = {

const spread

task: 'regression’,

debug: true

function setup()
{
createCanvas (400, 400)
angleMode (DEGREES)
ml5.setBackend("webgl")
nn = ml5.neuralNetwork(options)
trainingDatal()
nn.normalizeData()
const trainingOptions = {
batchSize: 512,
epochs:100
b

nn.train(trainingOptions, finishedTraining)

AI module A unit #3 10 of 49 www.elegantAl.org


http://www.elegantAI.org

function trainingDatal()

{
background(220)
for (let 1 = 0; 1 < width; 1 += 10)
{
for (let j = 0; j < number; j++)
{

data = [i + floor(random(-spread, spread)), 200 + (50 x*
sin(i) + floor(random(-spread, spread)))]

fill(e, o, 255)

noStroke()

circle(datal@], datall], 5)
nn.addData( [data[@]], [datal[1]ll)

function finishedTraining()

{
if (counter < 400)
{
nn.predict([counter], gotResults)
b
b

function gotResults(results)
{
let prediction = results[0]
let x = counter
let y = prediction.value
stroke(255, @, 0)

AI module A unit #3 11 of 49 www.elegantAlorg


http://www.elegantAI.org

strokeWeight(5)
point(x, y)
counter++

finishedTraining()

The changes were not a great improvement. You may get slightly different
results depending on how the weights are initialised in the model, but it
seems to level out after around 10 epochs.

® Challenge

el

Try again with different epoch settings.

X Code Explanation

epochs:100 Defines how many epochs if not using the default value

AI module A unit #3 12 of 49 www.elegantAl.org


http://www.elegantAI.org

Figure A3.2
m File w Editw Sketchw Help v English v Hello, TheHappyCoder! v
° . Auto-refresh mi5js # by TheHappyCoder c
""" S cketchis  Saved:Issecondsago  Preview
|9) LUIISL UpLLivuiis — U
7 task: 'regression', Maximize Hide
8 debug: true
13 3 Visor
11 function setup()
12 { Training Performance
13 createCanvas(400, 400) .
14 angleMode(DEGREES) % onEpochEnd
15 ml5.setBackend("webgl")
16 nn = ml5.neuralNetwork(options) e 000
17 trainingData() oo e
18 nn.normalizeData() '
19 const trainingOptions = { 0.07-
20 batchSize: 512, 0.06
21 epochs: 100  0.05-
2 ) S o0
23 nn.train(trainingOptions, finishedTraining)
— o 0.03-
Console Clear WV 0.024
0.01
0.00 T T T U T T T T T d
0 10 20 30 40 50 60 70 80 90 100
Epoch
AI module A unit #3 13 of 49 www.elegantAl.org


http://www.elegantAI.org

Figure A3.2

m File w Editw Sketch v Help v English v

° . Auto-refresh ml5js # by TheHappyCoder

> sketch.js Saved: 35 seconds ago Preview
CUINISL UpLLUIS =

task: 'regression',
debug: true

0 N C

9 |}

10

11 function setup()

12v|{

13 createCanvas(400, 400)

14 angleMode (DEGREES)

15 ml5.setBackend("webgl")
16 nn = ml5.neuralNetwork(options)
17 trainingData()

18 nn.normalizeData()

19 const trainingOptions = {

Hello, TheHappyCoder! v

e

20 batchSize: 512,
21 epochs: 100
22 ¥
23 nn.train(trainingOptions, finishedTraining)
Console Clear VvV
AI module A unit #3 14 of 49 www.elegantAl.org


http://www.elegantAI.org

% Sketch A3.3 layers

We can add more layers; more accurately, we can add more hidden layers.
In those layers, we can specify the number of nodes and the activation
function we want to use. The default settings are shown below:

% Input Layer
One input node

$ Output Layer

One output node

# Hidden Layer

By default, we have one hidden layer with 16 nodes.

F Dense

Means all the nodes in one layer are fully connected to the node in the
previous layer.

#  Activation Functions

In the hidden layer, they are the ReLU function, and for the output layer,
it is the sigmoid function.

let nn

let counter = 0

let data
const number = 30
const spread = 30

const options = {
task: 'regression',
layers: [
{
type: 'dense',
units: 16,

activation: 'relu'

AI module A unit #3 15 of 49 www.elegantAlorg


http://www.elegantAI.org

type: ‘'dense',
activation: 'sigmoid’
s
1,
debug: true

function setup()
{
createCanvas (400, 400)
angleMode (DEGREES)
ml5.setBackend("webgl")
nn = ml5.neuralNetwork(options)
trainingDatal()
nn.normalizeData()
const trainingOptions = {
batchSize: 512,
epochs:100
b

nn.train(trainingOptions, finishedTraining)

function trainingData()

{
background(220)
for (let 1 = 0; i < width; i += 10)
{
for (let j = @; j < number; j++)
{

data = [i + floor(random(-spread, spread)), 200 + (50 x
sin(i) + floor(random(-spread, spread)))]

AI module A unit #3 16 of 49 www.elegantAl.org


http://www.elegantAI.org

fill(e, o, 255)

noStroke()

circle(datal@], datall], 5)
nn.addData( [data[@]], [datal1]l])

function finishedTraining()

{
if (counter < 400)
{
nn.predict([counter], gotResults)
b
b

function gotResults(results)
{
let prediction = results[0]
let x = counter
let y = prediction.value
stroke(255, @, 0)
strokeWeight(5)
point(x, y)
counter++

finishedTraining()

As you can see, it has made no difference, which is really as expected. If
you get a better (or worse) result, just remember that it is starting each
time with different (random) weights as well as random data.

AI module A unit #3 17 of 49 www.elegantAlorg


http://www.elegantAI.org

® Challenge

S
ey

You might want to start changing the number of nodes in the hidden layer.

X Code Explanation

layers: [...] Adding layers in the training option

type: 'dense' Fully connected nodes between each layer
units: 16 16 nodes (neurons) in the hidden layer
activation: 'relu' Hidden layer activation function

activation: 'sigmoid' Output layer activation function

AI module A unit #3 18 of 49 www.elegantAl.org


http://www.elegantAI.org

Figure A3.3a

Hello, TheHappyCoder! v

° . Auto-refresh ml5js # by TheHappyCoder Q
I e S etonds ago Ll review I I

61 function finishedTraining() Maximize Hide
627 {
gi zf (counter < 400) Visor
65 nn.predict([counter], gotResults)
66 ¥ -
67 } Training Performance
68 %
69 function gotResults(results) ; onEpochEnd
707 {
71 let prediction = results[0] St 008y — loss
72 let x = counter { .
73 let y = prediction.value }
74 stroke(255, 0, 0) 0.06
75 strokeWeight(5) 005
76 point(x, y) .
77 counter++ ;30-04—
78 finishedTraining() 003
79 3} '
Console Clear Vv 0.021

0.01

0.00 T T T T T

0 10 20 30 40 50 60 70 80 90 100
Epoch

AI module A unit #3 19 of 49 www.elegantAl.org


http://www.elegantAI.org

Figure A3.3b

m File v Edit v Sketch v Help v English v

> sketch.js®

60

61 function finishedTraining()
627 {

63 if (counter < 400)

647 {

65 nn.predict([counter], gotResults)
66 }

67 }

68

69 function gotResults(results)
707 {

71 let prediction = results[0]
72 let x = counter

73 let y = prediction.value

74 stroke(255, 0, 0)

75 strokeWeight(5)

76 point(x, y)

° . Auto-refresh mi5js # by TheHappyCoder

Saved: 1 minute ago Preview

Hello, TheHappyCoder! v

77 counter++
78 finishedTraining()
79 %}
Console Clear VvV
AT module A unit #3 20 of 49 www.elegantAl.org


http://www.elegantAI.org

% Sketch A3.4 more hidden layers

Added two more identical hidden layers.

let nn

let counter = 0

let data
const number = 30
const spread = 30

const options = {
task: 'regression',
layers: [
{
type: 'dense',
units: 16,
activation: 'relu’
F
{
type: 'dense’,
units: 16,
activation: 'relu’
I
{
type: 'dense',
units: 16,

activation: 'relu'

type: 'dense',
activation: 'sigmoid’
¥
1,
debug: true

AI module A unit #3 21 of 49 www.elegantAl.org


http://www.elegantAI.org

function setup()
{
createCanvas (400, 400)
angleMode (DEGREES)
ml5.setBackend("webgl")
nn = ml5.neuralNetwork(options)
trainingData()
nn.normalizeData()
const trainingOptions = {
batchSize: 512,
epochs:100
b

nn.train(trainingOptions, finishedTraining)

function trainingDatal()

{
background(220)
for (let 1 = 0; 1 < width; 1 += 10)
{
for (let j = 0; j < number; j++)
{

data = [i + floor(random(-spread, spread)), 200 + (50 x*
sin(i) + floor(random(-spread, spread)))]

fill(e, o, 255)

noStroke()

circle(datal@], datall], 5)
nn.addData( [data[@]], [datal1]ll)

AI module A unit #3 22 of 49 www.elegantAl.org


http://www.elegantAI.org

function finishedTraining()

{
if (counter < 400)
{
nn.predict([counter], gotResults)
¥
b

function gotResults(results)
{
let prediction = results[0]

let x = counter

let y
stroke(255, 0, 0)
strokeWeight(5)

prediction.value

point(x, y)
counter++

finishedTraining()

You can see in my example the beginnings of a sine wave, but far from
what we might wanf.

AI module A unit #3 23 of 49 www.elegantAl.org


http://www.elegantAI.org

Figure A3.4a

Hello, TheHappyCoder! v

> sketch.js Saved: 25 seconds ago Preview
63
64 function finishedTraining() Maximize Hide
65Y|{
gg zf (counter < 400) Visor
68 nn.predict([counter], gotResults)
32 b ¥ Training Performance
71 ’F :'.
72 function gotResults(results) 'j’q' onEpochEnd
73V|{
74 let prediction = results[0] Y oo s
75 let x = counter 007
76 let y = prediction.value )
77 stroke(255, 0, 0) 0.06-
78  strokeWeight(5) 005
79 point(x, y) . )
80 counter++ § 0.04
81 finishedTraining() 0054
82 } }
Console Clear Vv 0021

0.01

0.00 : - - - - - - - - .

0 10 20 30 40 50 60 70 80 90 100
Epoch
AI module A unit #3 24 of 49 www.elegantAl.org


http://www.elegantAI.org

Figure A3.4b

73V|{

75 let x = counter

76 let y = prediction.value
77 stroke(255, 0, 0)

78 strokeWeight(5)

79 point(x, y)

80 counter++

81 finishedTraining()

82 2

Console

> sketch.js

63

64 function finishedTraining()

65Y({

66 if (counter < 400)

67 {

68 nn.predict([counter], gotResults)
69 }

70 %}

71

72 function gotResults(results)

74 let prediction = results[0]

Saved: 35 seconds ago Preview

Hello, TheHappyCoder! v

° . Auto-refresh ml5js # by TheHappyCoder

Clear WV

AI module A unit #3

25 of 49

www.elegantAlorg



http://www.elegantAI.org

-%: Sketch A3.5 more nodes

Increasing the number of nodes, they dont have to be equal for each
hidden layer; it is worth trying mixing it up a bit to see what happens.

let nn

let counter = 0@
let data

const number = 30
const spread = 30
const options = {

task: 'regression',

layers: [

{
type: 'dense',
units: 64,
activation: 'relu’

F

{
type: 'dense’,
units: 64,
activation: 'relu’

I

{
type: 'dense',
units: 64,

activation: 'relu'

type: 'dense',
activation: 'sigmoid’
¥
1,

AI module A unit #3 26 of 49 www.elegantAl.org


http://www.elegantAI.org

debug: true

function setup()
{
createCanvas (400, 400)
angleMode (DEGREES)
ml5.setBackend("webgl")
nn = ml5.neuralNetwork(options)
trainingDatal()
nn.normalizeData()
const trainingOptions = {
batchSize: 512,
epochs:100
b

nn.train(trainingOptions, finishedTraining)

function trainingDatal()

{
background(220)
for (let 1 = 0; i < width; i += 10)
{
for (let j = @0; j < number; j++)
{

data = [i + floor(random(-spread, spread)), 200 + (50 x
sin(i) + floor(random(-spread, spread)))]

fill(e, o, 255)

noStroke()

circle(datal@], datalll, 5)
nn.addData( [data[@]], [datal1]ll)

AI module A unit #3 27 of 49 www.elegantAl.org


http://www.elegantAI.org

function finishedTraining()

{
if (counter < 400)
{
nn.predict([counter], gotResults)
b
b

function gotResults(results)
{
let prediction = results[0]
let x = counter
let y = prediction.value
stroke(255, 0, 0)
strokeWeight(5)
point(x, y)
counter++

finishedTraining()

You can see the pattern emerging, but it is still less than satisfactory.

® Challenge

<elo

Think about more/fewer nodes, more/fewer layers.

AI module A unit #3 28 of 49 www.elegantAl.org


http://www.elegantAI.org

Figure A3.5a

Hello, TheHappyCoder! v

) sketch.js Saved: 2 minutes ago Preview
65 function finishedTraining() MERIRIES Hide
667 {
g; %f (counter < 400) Visor
69 nn.predict([counter], gotResults)
70 3 -
71 3} Training Performance
72 "‘.:.
73 function gotResults(results) 5 onEpochEnd
747 { X
75 let prediction = results[0] ‘!3: 0.18 — loss
76 let x = counter ' o6
77 let y = prediction.value
78  stroke(255, 0, 0) 0141
79 strokeWeight(5) 0.12-
80 point(x, y) 010
81 counter++ g
82 finishedTraining() 0.08
83 } 0.06-
Console Clear WV 0.04+

0.02-{

0.00 T T T T T T T T T 1

0 10 20 30 40 50 60 70 80 90 100
Epoch
AI module A unit #3 29 of 49 www.elegantAl.org


http://www.elegantAI.org

Figure A3.5b

78 stroke(255, 0, 0)
79 strokeWeight(5)

80 point(x, y)

81 counter++

82 finishedTraining()
83 1}

Console

> sketch.js

64

65 function finishedTraining()
667 {

67 if (counter < 400)

687 {

69 nn.predict([counter], gotResults)
70}

AND;

72

73 function gotResults(results)
747 {

75 let prediction = results[0]
76 let x = counter

77 let y = prediction.value

Saved: 2 minutes ago Preview

Clear Vv

Hello, TheHappyCoder! v

AI module A unit #3

30 of 49

www.elegantAlorg


http://www.elegantAI.org

¢k Sketch A3.6 learning rate

Another hyperparameter we can change is the learning rate. The
learningRate is the size of steps the algorithm tfakes to find the lowest
point in the calculations. If the steps are foo big, they can miss the global
minimum; too small, and it can never find the minimum and gets stuck on a
local minimum. We are keeping the number of layers and nodes the same
as in the previous sketch.

let nn

let counter = 0

let data
const number = 30
const spread = 30

const options = {
task: 'regression',
learningRate: 0.1,
layers: [
{
type: 'dense',
units: 64,

activation: 'relu'

type: 'dense',
units: 64,

activation: 'relu’

type: 'dense’,
units: 64,

activation: 'relu’

AI module A unit #3 31 of 49 www.elegantAl.org


http://www.elegantAI.org

type: 'dense’,
activation: 'sigmoid'
I
1,
debug: true

function setup()
{
createCanvas (400, 400)
angleMode (DEGREES)
ml5.setBackend("webgl")
nn = ml5.neuralNetwork(options)
trainingDatal()
nn.normalizeData()
const trainingOptions = {
batchSize: 512,
epochs:100
¥

nn.train(trainingOptions, finishedTraining)

function trainingDatal()

{
background(220)
for (let i = 0; i < width; i += 10)
{
for (let j = 0; j < number; j++)
{

data = [i + floor(random(-spread, spread)), 200 + (50 x*
sin(i) + floor(random(-spread, spread)))]

fill(e, @, 255)
noStroke()

AI module A unit #3 32 of 49 www.elegantAl.org


http://www.elegantAI.org

circle(datal[o], datall]l, 5)
nn.addData( [datal[@]], [datall]ll)

function finishedTraining()

{
if (counter < 400)
{
nn.predict([counter], gotResults)
¥
¥

function gotResults(results)
{
let prediction = results[0]
let x
let vy
stroke(255, 0, 0)
strokeWeight(5)

counter

prediction.value

point(x, vy)
counter++

finishedTraining()

Not a significant difference, but the loss function is very jumpy.

® Challenge
I could fiddle with these values endlessly, and that is why machine learning
is an art as much as a science. I will let you play around, perhaps trying

learning rates of 1 or 0.001, more nodes but fewer hidden layers.

AI module A unit #3 33 of 49 www.elegantAl.org


http://www.elegantAI.org

“X Code Explanation

We can specify the learning rate, the steps (or

learningRate: 0.1 jumps) in the training process

AI module A unit #3 34 of 49 www.elegantAl.org


http://www.elegantAI.org

Figure A3.6a

Hello, TheHappyCoder! v

° - Auto-refresh mi5js & by TheHappyCoder Q
""" Bl cccni: T snediossecondsage | Preview T

63
64 function finishedTraining() Maximize Hide
65Y|{
g?/ %f (counter < 400) Visor
68 nn.predict([counter], gotResults)
69
o 13 ¥ Training Performance
71 3o
72 function gotResults(results) » onEpochEnd
73V/{ H
74 let prediction = results[0] '_‘“' 008 s
75 let x = counter { 007
76 let y = prediction.value )
77 stroke(255, 0, 0) 0.06
78 strokeWeight(5) 005
79 point(x, y) .
80 counter++ é 0.04-
81 finishedTraining() 005
82 } )
Console Clear Vv 0.021

0.01

0.00 : - ‘ - - - - : : ‘

0 10 20 30 40 50 60 70 80 90 100
Epoch
AI module A unit #3 35 of 49 www.elegantAl.org


http://www.elegantAI.org

Figure A3.6b

m File w Editw Sketchw Help v English v

63

65

Console

° . Auto-refresh mlSjs # by TheHappyCoder

sketch.js Saved: 35 seconds ago

{

3

64 function finishedTraining()

if (counter < 400)
{

nn.predict([counter], gotResults)
¥

function gotResults(results)

{

b

let prediction = results[0]
let x = counter

let y = prediction.value
stroke(255, 0, 0)
strokeWeight(5)

point(x, y)

counter++
finishedTraining()

Clear WV

Hello, TheHappyCoder! v

Preview

AI module A unit #3

36 of 49 www.elegantAl.org


http://www.elegantAI.org

% Sketch A3.7 always a bit of trial and error

I have increased the number of nodes but reduced the number of layers,

as well as reduced the learning rate to 0.01.

let nn

let counter = 0

let data
const number = 30
const spread = 30

const options = {
task: 'regression',
learningRate: 0.01,
layers: [
{
type: 'dense',
units: 256,

activation: 'relu'

type: 'dense',
units: 256,

activation: 'relu’

type: 'dense’,
activation: 'sigmoid'
by
1,
debug: true

function setup()

AI module A unit #3 37 of 49

www.elegantAl.org


http://www.elegantAI.org

createCanvas (400, 400)
angleMode (DEGREES)
ml5.setBackend("webgl")
nn = ml5.neuralNetwork(options)
trainingData()
nn.normalizeData()
const trainingOptions = {
batchSize: 512,
epochs:100
b

nn.train(trainingOptions, finishedTraining)

function trainingDatal()

{
background(220)
for (let 1 = 0; 1 < width; 1 += 10)
{
for (let j = @; j < number; j++)
{

data = [i + floor(random(-spread, spread)), 200 + (50 x*
sin(i) + floor(random(-spread, spread)))]

fill(e, o, 255)

noStroke()

circle(datal@], datall], 5)
nn.addData( [data[@]], [datal1]ll)

function finishedTraining()

{

AI module A unit #3 38 of 49 www.elegantAl.org


http://www.elegantAI.org

if (counter < 400)
{

nn.predict([counter], gotResults)

function gotResults(results)
{
let prediction = results[0]

let x = counter

let vy
stroke(255, @, 0)
strokeWeight(5)
point(x, y)

prediction.value

counter++

finishedTraining()

Starting to see some improvements. Bear in mind, however, that every time
you run the code, we are using different data (not saved or uploaded), but
this is for ease of use and demonstration purposes.

® Challenge

Play around with the number of nodes and the learning rate,
consider saving the data in the first place, and then experimenting with
the hyperparameters.

AI module A unit #3 39 of 49 www.elegantAl.org


http://www.elegantAI.org

Figure A3.7a

Hello, TheHappyCoder! v

> sketch,js® Saved: 4 minutes ago Preview
60 function finishedTraining() MERRES Hide
61Y({
2§ {1:f (counter < 400) Visor
64 nn.predict([counter], gotResults)
22 b ¥ Training Performance
67 3
o

68 function gotResults(results) ,"&.;4 onEpochEnd
69Y({ 9
70 let prediction = results[0] "J,?' — loss
71 let x = counter 0061
) let y = prediction.value 005
73 stroke(255, 0, 0) 1
74 strokeWeight(5) -
75 point(x, y) o
76 counter++ go.oa—
77 finishedTraining()
78 '} 0.02-
Console Clear WV

0.01

0.00 : . ; . - . . ; ; )

0 10 20 30 40 50 60 70 80 90 100
Epoch
AI module A unit #3 40 of 49 www.elegantAl.org


http://www.elegantAI.org

Figure A3.7b

m File v Edit v Sketch v Help v English v

59

61
62
63
64
65
66
67
68
69
70
71
72
U3
74
75
76
71
78

Console

° . Auto-refresh mi5js # by TheHappyCoder

sketch.js® Saved: 4 minutes ago

{

}

60 function finishedTraining()

if (counter < 400)
{

nn.predict([counter], gotResults)
}

function gotResults(results)

{

3

let prediction = results[0]
let x = counter

let y = prediction.value
stroke(255, 0, 0)
strokeWeight(5)

point(x, y)

counter++
finishedTraining()

Clear Vv

Hello, TheHappyCoder! v

Preview

AI module A unit #3

41 of 49 www.elegantAl.org


http://www.elegantAI.org

& Activation functions

The final hyperparameter we are going fo look at is the activation
functions. The default for a regression task is hidden layer: RelLU and
output layer: Sigmoid.

Just to save on space, I will not change any other lines of code except the

options for layers, so the rest of the code remains the same and is omitted
for brevity.

AI module A unit #3 42 of 49 www.elegantAl.org


http://www.elegantAI.org

<k Sketch A3.8 changing the activation function

Using the same hyperparameters, we will switch the ReLU to sigmoid.

let nn

let counter = 0

let data
const number = 30
const spread = 30

const options = {
task: 'regression',
learningRate: 0.01,
layers: [
{
type: 'dense',
units: 256,

activation: 'sigmoid'

type: 'dense',
units: 256,

activation: 'sigmoid’

type: 'dense’,
activation: 'sigmoid'
by
1,
debug: true

function setup()

{

AI module A unit #3 43 of 49

www.elegantAl.org


http://www.elegantAI.org

createCanvas (400, 400)
angleMode (DEGREES)
ml5.setBackend("webgl")
nn = ml5.neuralNetwork(options)
trainingDatal()
nn.normalizeData()
const trainingOptions = {
batchSize: 512,
epochs:100
¥
nn.train(trainingOptions, finishedTraining)

console. log()

function trainingDatal()

{
background(220)
for (let 1 = 0; 1 < width; 1 += 10)
{
for (let j = @; j < number; j++)
{

data = [i + floor(random(-spread, spread)), 200 + (50 x*
sin(i) + floor(random(-spread, spread)))]

fill(e, o, 255)

noStroke()

circle(datal@], datall], 5)
nn.addData( [data[@]], [datal1]ll)

function finishedTraining()

{

AI module A unit #3 44 of 49 www.elegantAlorg


http://www.elegantAI.org

if (counter < 400)
{

nn.predict([counter], gotResults)

function gotResults(results)
{
let prediction = results[0]

let x = counter

let vy
stroke(255, @, 0)
strokeWeight(5)

prediction.value

point(x, y)
counter++

finishedTraining()

Oh, dear! ReLU gives consistently better results. It is more efficient and is
the industry standard. You could see if you can get better results with
fewer or more layers and nodes. I will leave that with you to experiment.

® Challenge
Use tanh instead of sigmoid.

AI module A unit #3 45 of 49 www.elegantAlorg


http://www.elegantAI.org

Figure A3.8a

Hello, TheHappyCoder! v

> sketch.js® Saved: 26 minutes ago Preview
59
60 function finishedTraining() Maximize fiide
617|{
25 ;icf (counter < 400) Visor
64 nn.predict([counter], gotResults)
65 } -
66 } Training Performance
67 o
68 function gotResults(results) ‘,?g onEpochEnd
697 { "
70 let prediction = results[0] b 035- s
71 let x = counter 1
72 let y = prediction.value 0807
73 stroke(255, 0, 0) 025
74 strokeWeight(5)
75 point(x, y) o 020
76 counter++ E,
77 finishedTraining() 0.151
78 } 0.10-
Console Clear WV
0.05-
0.00 T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100
Epoch
AI module A unit #3 46 of 49 www.elegantAl.org


http://www.elegantAI.org

Figure A3.8b

73 stroke(255, 0, 0)
74 strokeWeight(5)

75 point(x, y)

76 counter++

77 finishedTraining()
78

Console

> sketch,js®

59

60 function finishedTraining()
61Y|{

62 if (counter < 400)

63 {

64 nn.predict([counter], gotResults)
65 }

66 }

67

68 function gotResults(results)
69Y|{

70 let prediction = results[0]
71 let x = counter

72 let y = prediction.value

° . Auto-refresh ml5js # by TheHappyCoder

Saved: 27 minutes ago Preview

Clear WV

Hello, TheHappyCoder! v

AI module A unit #3

47 of 49

www.elegantAlorg


http://www.elegantAI.org

% Final challenges

We have looked at the following hyperparameters:

F Batch size

% Epochs

# Hidden layers
# Nodes

F Activation functions
% Learning rate

I would strongly recommend playing with all of these and seeing how they
impact the models learning. Remember that you will never get a perfect
result. Also, try drawing the sine wave as a single line rather than a
scatter graph approach as we did with the linear regression.

AI module A unit #3 48 of 49 www.elegantAl.org


http://www.elegantAI.org

ek Summary

You will probably start to realise that throwing more nodes and hidden
layers at the dataset doesnt necessarily improve the outcome. You may
also realise that having a smaller learning rate and a smaller batch
Ssize may give you some slightly improved outcome, but you may have to
wait a considerably longer time. Remember, in the real world, time and
energy are money.

AI module A unit #3 49 of 49 www.elegantAl.org


http://www.elegantAI.org

