Artificial
Intelligence
Module A

Unit #4
mouse gesture
classification




Module A Unit #4 mouse gesture classification

Introduction to mouse gesture
The index.html file

Sketch A4.1
The data
Sketch A4.2
Sketch A4.3
Sketch A4.4
Sketch A4.5
Sketch A4.6
Sketch A4.7
Sketch A4.8
Sketch A4.9
Sketch A4.10

AI module A unit #4

our starting sketch

adding the data

building the model

adding the data training the model
training the model

epochs

mouse vectors

classifying the mouse

getting the results

displaying the results

2 of 32

www.elegantAl.org



«k Introduction to mouse gesture with ml5.js

The two examples so far have been regression tasks, so now we need a
classification task. We will try to identify which way the mouse is
moving, either up, down, left, or right. First, we will create some synthetic
data to train the model on.

The model is then trained on this data over a number of epochs until we
are happy with the result. We are going to be careful that there is no
underfitting or overfitting.

When the model is trained, we can tfest it by moving the mouse in each
direction to see how well it performs. Remember that this is a relatively
simple example and has many drawbacks and omissions, but it demonstrates
a simple classification task.

! keep the index.html file as it was for the previous three units. We will

be using ml5.js as before, so make sure that you have the line of code in
the index.html file.

AI module A unit #4 3 of 32 www.elegantAlorg



k- Sketch A4.1 our starting sketch

We start with our basic sketch.

function setup()

{
createCanvas (400, 400)

function draw()

{
background(220)

AI module A unit #4 4 of 32 www.elegantAlorg



<% The data

We are using synthetic data once again. This time, rather than generating
it, we will hard-code it. You will notice that it is an array of objects.
Each object has three elements:

# the x component of a vector,
# the y component of the vector, and
# the label indicating which direction it is going in.

You may notice that the units are between 0 and 1. We have effectively
normalised the data already, so no need to do it again. We have two sets
of data for each movement: left, right, up, and down. This is a very
small dataset, but we will see how well it does once we start training it.

The data is a vector, which is the amount the mouse has moved from the
relative position of (0, 0).

AI module A unit #4 5 of 32 www.elegantAlorg



Sketch A4.2 adding the data

Add in the data as shown below. I have kept it very simple and very
obvious. Either +1, -1, +0.1, —0.1 depending on the relevant direction.

let data

{x:
{x:
{x:
{x:
{x:
{x:
{x:
{x:

1,
1,

y
y

[

: 0.1, label: "right"},
: 0.1, label: "right"},

-1, y: 0.1, label: "left"},
-1, y: -0.1, label: "left"},
0.1, y: 1, label: "down"},
-0.1, y: 1, label: "down"},
0.1, y: -1, label: "up"},
-0.1, y: -1, label: "up"}

function setup()

{

createCanvas (400, 400)

function draw()

{

background(220)

I hope this seems fairly straightforward. The format is for a JSON-type

array.

AI module A unit #4 6 of 32

www.elegantAl.org



® Challenges

1. You could adjust some of the values, making them more random, so
that they are not so obvious.

2. Increase the size of the dataset.

3. You could think about how you would collect and then save the data to

be loaded (maybe for another time).

X Code Explanation
let data = [. . .] Create an array of objects

This is an object with two vectors and a
{x: 1, y: 0.1, label: "right"}, label, this moves the coordinates to the
right and slightly downwards

This is an object with two vectors and a
{x: -0.1, y: -1, label: "up"} label, this moves the coordinates slightly
to the left and upwards

AI module A unit #4 7 of 32 www.elegantAlorg



Sketch A4.3 building the model

You should be familiar with building the model now. We are going to create
a neural network model and call it nn. We will give the neural network
the following options:

It is a classification task.

- Set debug to true, which will show the progress of the training (you

can set it to false later).

let nn

let data = [
{ x: 1, y: 0.1, label: "right"},
{ x: 1, y: -0.1, label: "right"},
{ x: -1, y: 0.1, label: "left"},
{ x: -1, y: -0.1, label: "left"},
{ x: 0.1, y: 1, label: "down"},
{ x: -0.1, y: 1, label: "down"},
{ x: 0.1, y: -1, label: "up"},
{ x: -0.1, y: -1, label: "up"}

function setup()

{

createCanvas (400, 400)
ml5.setBackend("webgl")
let options = {
task: "classification",
debug: true
b

nn = ml5.neuralNetwork(options)

function draw()

{

Al

module A unit #4 8 of 32

www.elegantAl.org



background(220)

We are building the model just as we have done before.

AI module A unit #4 9 of 32 www.elegantAlorg



¢ Sketch A4.4 adding the data training the model

The for() loop (let items of data) will pull all the datapoints in the
data array into another array called items. We can then create an array
of inputs based on the X and y values. The output array then can collect
all the labels that go with those input vectors. We then add this dataset
to the neural network model nn.addData(inputs, outputs).

let nn

let data = [
{ x: 1, y: 0.1, label: "right"},
{ x: 1, y: -0.1, label: "right"},
{ x: -1, y: 0.1, label: "left"},
{ x: -1, y: -0.1, label: "left"},
{ x: 0.1, y: 1, label: "down"},
{ x: -0.1, y: 1, label: "down"},
{ x: 0.1, y: -1, label: "up"},
{ x: -0.1, y: -1, label: "up"}

function setup()

{

createCanvas (400, 400)

ml5.setBackend("webgl")

let options = {
task: "classification",
debug: true

b

nn = ml5.neuralNetwork(options)

for (let item of data)

{
let inputs = [item.x, item.y]
let outputs = [item.labell]
nn.addData(inputs, outputs)

AI module A unit #4 10 of 32

www.elegantAl.org



function draw()

{

background(220)
b
~, Notes

It pulls all the X, y and label values from the array and adds this data
to the neural network model (nn). This is similar to the regression
tasks, but there is a slightly different approach for classification
tasks.

AI module A unit #4 11 of 32 www.elegantAlorg



& Sketch A4.5 training the model

After we have added the data, we are going to train it with nn.train(),
with a callback finishedTraining which will let us know when it has
finished. The callback is a function; it will help us o keep track of what is
happening. To help us at this stage, we will console log the status. The
default is training, and when it has finished training, the status will
change to ready.

let nn

let status = "training"

let data = [

: 1, y: 0.1, label: "right"},

: 1, y: -0.1, label: "right"},
: -1, y: 0.1, label: "left"},

: -1, y: -0.1, label: "left"},
: 0.1, y: 1, label: "down"},

: -0.1, y: 1, label: "down"},
: 0.1, y: -1, label: "up"},

: 0.1, y: -1, label: "up"}

0 S UG U0 U U0 U0 U
X X X X X X X X

function setup()
{
createCanvas (400, 400)
ml5.setBackend("webgl")
let options = {
task: '"classification",
debug: true
¥
nn = ml5.neuralNetwork(options)
for (let item of data)
{

let inputs = [item.x, item.y]

AI module A unit #4 12 of 32 www.elegantAlorg



let outputs = [item.label]
nn.addData(inputs, outputs)
b

nn.train(finishedTraining)

function finishedTraining()
{
status = "ready"

console. log(status)

function draw()

{

background(220)
b
~, Notes

The status should go from training to ready once it has finished
training (you wont see the word training). We also can see that 10 epochs
are nowhere near enough, so we need tfo increase that hyperparameter.

X Code Explanation

let status = "training" This is a string variable that is initialised to “training”

status = "ready" The string variable value is now “ready”

AI module A unit #4 13 of 32 www.elegantAlorg



Figure A4.5

m File v Editwv Sketch v Help v English v Hello, TheHappyCoder! v

° - Auto-refresh miSjs # by TheHappyCoder Q

) sketch.js® Saved: 18 minutes ago Preview

23 nn = ml5.neuralNetwork(options)

24 for (let item of data) Maximize Hide
25Y| {

26 let inputs = [item.x, item.y] Visor

27 let outputs = [item.label]

28 nn.addData(inputs, outputs)

29 } -

30 nn.train(finishedTraining) Training Performance
31 |}

37! onEpochEnd

33 function finishedTraining()
34 { 1.6 — loss

35) status = "ready" il
36 console.log(status) )
37 } 1.2+
38 1.04
39 function draw() R
407 { ;’,o.af
41 background(220) 064
42 }
Console Clear VvV 041
ready 0.2
0.0 T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9

AT module A unit #4 14 of 32 www.elegantAlorg



& Sketch A4.6 epochs

Clearly, the loss function was still going down, so we will try 250 epochs
and see if that works. We can just add it straight into the nn.train()

function, just a shorthand formatting version.

let nn

let status = "training"

let data = [
{ x: 1, y: 0.1, label: "right"},
{ x: 1, y: -0.1, label: "right"},
{ x: -1, y: 0.1, label: "left"},
{ x: -1, y: -0.1, label: "left"},
{ x: 0.1, y: 1, label: "down"},
{ x: -0.1, y: 1, label: "down"},
{ x: 0.1, y: -1, label: "up"},
{ x: -0.1, y: -1, label: "up"}

function setup()
{
createCanvas (400, 400)
ml5.setBackend("webgl")
let options = {
task: "classification",
debug: true
¥
nn = ml5.neuralNetwork(options)
for (let item of data)
{
let inputs = [item.x, item.y]
let outputs = [item.labell
nn.addData(inputs, outputs)

AI module A unit #4 15 of 32

www.elegantAl.org



by

nn.train({epochs: 250}, finishedTraining)

function finishedTraining()
{
status = "ready"

console. log(status)

function draw()

{
background(220)

You will see that it was still going down even after 250 epochs, so it may
continue to reduce; however, it is probably overfitting after, say, 100
epochs. The reason for such a high number of epochs compared to our
other examples could be that it is a tiny dataset. If you move your mouse
over the chart, it gives you the value of the loss function. My effort was
0.009, which is pretty low.

® Challenge

<elv

Try an even larger number of epochs.

X Code Explanation

nn.train({epochs: 250}, Specifying the number of epochs within the
finishedTraining) training fucntion

AI module A unit #4 16 of 32 www.elegantAlorg



Figure A4.6

Hello, TheHappyCoder! v

° - Auto—refresh miSjs # by TheHappyCoder Q
""" > setchis® T saedi2minutesago  Preview
16Y({ - .
17 createCanvas(400, 400) Maximize Hide

18 ml5. setBackend("webgl")
19 let options = { Visor
20 task: "classification",
21 debug: true
22 3} -
T Perf

23 nn = ml5.neuralNetwork(options) ralhing Terformance
24 for (let item of data)

onEpochEnd
25| { ittt
26 let inputs = [item.x, item.y]
27 let outputs = [item.label] 147 — loss
28 nn.addData(inputs, outputs)

1.2
29 }
30 nn.train({epochs: 250}, finishedTraining) 104
31 %}
32 o 08

3

33 function finishedTraining() s

0.6
347 {
35 status = "ready" 044

Console Clear WV
0.2
ready
0.0 T T T T T T T T T T T T 1
0 20 40 60 80 100 120 140 160 180 200 220 240 260
Epoch
AT module A unit #4 17 of 32 www.elegantAlorg



- Sketch A4.7 mouse vectors

What we want to do now is move the mouse in such a way that we can
use the model to predict what movement it has made, either up, down,
left, or right. So we need two variables for the start and end of the
mouse movement. The movement starts when the mouse is clicked and
keeps going while it is dragged (and then stops dragging). So we have two
vectors for the start and for the end.

let nn

let status = "training"

let start

let end

let data = [
{ x: 1, y: 0.1, label: "right"},
{ x: 1, y: -0.1, label: "right"},
{ x: -1, y: 0.1, label: "left"},
{ x: -1, y: -0.1, label: "left"},
{ x: 0.1, y: 1, label: "down"},
{ x: -0.1, y: 1, label: "down"},
{ x: 0.1, y: -1, label: "up"},
{ x: -0.1, y: -1, label: "up"}

function setup()

{

createCanvas (400, 400)
ml5.setBackend("webgl")
let options = {
task: "classification",
debug: true
b
nn = ml5.neuralNetwork(options)
for (let item of data)

AI module A unit #4 18 of 32

www.elegantAl.org



let inputs = [item.x, item.y]
let outputs = [item.label]
nn.addData(inputs, outputs)

¥

nn.train({epochs: 250}, finishedTraining)

function finishedTraining()

{
status = "ready"

console. log(status)

function draw()

{
background(220)

function mousePressed()

{

start = createVector(mouseX, mouseY)

function mouseDragged()

{

end = createVector(mouseX, mouseY)

Nothing will happen just yet; we are just collecting data from the mouse.

AI module A unit #4 19 of 32 www.elegantAlorg



K Code Explanation

We create a vector (called start) as

start = createVector(mouseX, mouseY) .
soon as we click on the canvas

A final vector is created as we

end = createVector(mouseX, mouseY)
drag the mouse across the canvas

AI module A unit #4 20 of 32 www.elegantAlorg



ok Sketch A4.8 classifying the mouse

We create another function to input the data into the model (which has
been trained on the synthetic dataset). This function is called when the
mouse is released after it has finished dragging. The key elements are
described below:

# The direction (dir) of the movement is done by subtracting the two
vectors (end and start).

# We normalise them so their magnitudes are less than 1.

# We then get the x and y components from the direction (dir.x,
dir.y) vector.

7 We then have these as our new inputs to classify as either up,
down, left, or right and put them into the model.

# The classification takes two arguments: one is the inputs and
the other, gotResults, is the output.

let nn

let status = "training"

let start

let end

let data = [
{ x: 1, y: 0.1, label: "right"},
{ x: 1, y: -0.1, label: "right"},
{ x: -1, y: 0.1, label: "left"},
{ x: -1, y: -0.1, label: "left"},
{ x: 0.1, y: 1, label: "down"},
{ x: -0.1, y: 1, label: "down"},
{ x: 0.1, y: -1, label: "up"},
{ x: -0.1, y: -1, label: "up"}

function setup()

{
createCanvas (400, 400)

AI module A unit #4 21 of 32 www.elegantAlorg



ml5.setBackend("webgl")
let options = {
task: "classification",
debug: true
b
nn = ml5.neuralNetwork(options)
for (let item of data)

{
let inputs = [item.x, item.y]
let outputs = [item.label]
nn.addData(inputs, outputs)

b

nn.train({epochs: 250}, finishedTraining)

function finishedTraining()

{
status = "ready"

console. log(status)

function draw()

{
background(220)

function mousePressed()

{

start = createVector(mouseX, mouseY)

function mouseDragged()

{

AI module A unit #4 22 of 32

www.elegantAl.org



end = createVector(mouseX, mouseY)

function mouseReleased()

{
let dir = p5.Vector.sub(end, start)
dir.normalize()
let inputs = [dir.x, dir.yl

nn.classify(inputs, gotResults)

........

! Please note you will get a script error if you run this.

When we classify the movement of the mouse, we give it the inputs
(dir.x, dir.y) plus a callback. This callback is a function which will
carry the result. Next, we need to create a function called, you guessed it
gotResults() to make use of the result.

K Code Explanation

We subtract the two vectors, end

let dir = p5.Vector.sub(end, start) and start

The subtraction of those two vectors
dir.normalize() (called dir) is normalised to be
between O and 1

The inputs into the classify function
let inputs = [dir.x, dir.y] are the x and y components of the
vector

We give the inputs to the classify
nn.classify(inputs, gotResults) function and also give it a callback
(gotResults)

AI module A unit #4 23 of 32 www.elegantAlorg



¢k Sketch A4.9 getfting the results

As we create the callback function gotResults(), we can see how well
we are doing by putting the results in the console for now. The status
changes from training to ready, and now it is expressed as one of the
labels left, right, up, or down.

I We will change the debug to false or remove it altogether.

let nn

let status = "training"

let start

let end

let data = [
{ x: 1, y: 0.1, label: "right"},
{ x: 1, y: -0.1, label: "right"},
{ x: -1, y: 0.1, label: "left"},
{ x: -1, y: -0.1, label: "left"},
{ x: 0.1, y: 1, label: "down"},
{ x: -0.1, y: 1, label: "down"},
{ x: 0.1, y: -1, label: "up"},
{ x: -0.1, y: -1, label: "up"}

function setup()

{

createCanvas (400, 400)
ml5.setBackend("webgl")
let options = {
task: "classification",
debug: false
¥

nn = ml5.neuralNetwork(options)

AI module A unit #4 24 of 32

www.elegantAl.org



for (let item of data)

{
let inputs = [item.x, item.y]
let outputs = [item.label]
nn.addData(inputs, outputs)

b

nn.train({epochs: 250}, finishedTraining)

function finishedTraining()

{
status = "ready"

console. log(status)

function draw()

{
background(220)

function mousePressed()

{

start = createVector(mouseX, mouseY)

function mouseDragged()

{

end = createVector(mouseX, mouseY)

function mouseReleased()

{
let dir = p5.Vector.sub(end, start)

AI module A unit #4 25 of 32

www.elegantAl.org



dir.normalize()
let inputs = [dir.x, dir.y]

nn.classify(inputs, gotResults)

function gotResults(results)

{
status = results[@].label
console. log(status)

}

. Notes

This seems to work quite well. Remember to hold the button down as you

move the mouse, and when you release the button, you should get the
correct movement.

X Code Explanation

status = results[0].label We can now see The result of the mouse
movement (drag) in the console

AI module A unit #4 26 of 32 www.elegantAlorg



Figure A4.9

m File w Editw Sketchwv Help v English v Hello, TheHappyCoder! v

° . Auto-refresh mlSjs # by TheHappyCoder Q

> sketch.js Saved: 3 minutes ago Preview
49 }

50

51 function mouseDragged()

52V|{

53 end = createVector(mouseX, mouseY)
54 }

55

56 function mouseReleased()

57V|{

58 let dir = p5.Vector.sub(end, start)
59 dir.normalize()

60 let inputs = [dir.x, dir.y]
61 nn.classify(inputs, gotResults)
62 }

Console Clear WV

ready

up

right

left

down

up

down

AT module A unit #4 27 of 32 www.elegantAlorg



& Sketch A4.10 displaying the results

We want to see this in action. We want the result on the canvas and also
draw a line showing the movement of the mouse. We will do all this in the
draw() function.

Comment out the console logs

let nn

let status = "training"
let start
let end

let data = [

: 1, y: 0.1, label: "right"},
: 1, y: -0.1, label: "right"},
: -1, y: 0.1, label: "left"},
: -1, y: -0.1, label: "left"},
: 0.1, y: 1, label: "down"},

: -0.1, y: 1, label: "down"},
: 0.1, y: -1, label: "up"},

: -0.1, y: -1, label: "up"}

0 U UG 0 U0 UL U0 U U
X X X X X X X X

function setup()

{

createCanvas (400, 400)
ml5.setBackend("webgl")
let options = {
task: “classification”,
debug: false
¥
nn = ml5.neuralNetwork(options)
for (let item of data)

AI module A unit #4 28 of 32

www.elegantAl.org



let inputs = [item.x, item.y]
let outputs = [item.label]
nn.addData(inputs, outputs)

¥

nn.train({epochs: 250}, finishedTraining)

function finishedTraining()
{
status = "ready"

// console.log(status)

function draw()

{
background(220)
textAlign(CENTER, CENTER)
textSize(64)
text(status, width/2, height/2)
if (start && end)
{

strokeWeight(8)

line(start.x, start.y, end.x, end.y)

function mousePressed()

{

start = createVector(mouseX, mouseY)

function mouseDragged()

AI module A unit #4 29 of 32

www.elegantAl.org



end = createVector(mouseX, mouseY)

function mouseReleased()

{
let dir = p5.Vector.sub(end, start)
dir.normalize()
let inputs = [dir.x, dir.y]

nn.classify(inputs, gotResults)

function gotResults(results)

{
status = results[@]. label

// console.log(status)

We dont need the console logs anymore as we are writing straight to the
canvas.

® Challenge
Add some colour or other event.

X Code Explanation

Puts the complete text in the
centre of the text co-ordinates

textSize(64) Nice and big text
text(status, width/2, height/2) The status has the string values

textAlign(CENTER, CENTER)

Condition, draws the line when we

if (start & end) have a start AND end vector

line(start.x, start.y, end.x, end.y) Draw the line to those two vectors

AI module A unit #4 30 of 32 www.elegantAlorg



Figure A4.10a Figure A4.10b
we are training we are ready (training complete)

training ready

Figure A4.10c Figure A4.10d
move and release upwards and then down

up down

AI module A unit #4 31 of 32 www.elegantAlorg



Figure A4.10e Figure A4.10f
move to the left and now fo the right

left right

\

AI module A unit #4 32 of 32 www.elegantAlorg



