
 

Artificial 
Intelligence

Module A

Unit #4

mouse gesture 
classification



Module A Unit #4 mouse gesture classification


Introduction to mouse gesture

The index.html file

Sketch A4.1  our starting sketch

The data

Sketch A4.2  adding the data

Sketch A4.3  building the model

Sketch A4.4  adding the data training the model

Sketch A4.5  training the model

Sketch A4.6  epochs

Sketch A4.7  mouse vectors

Sketch A4.8  classifying the mouse

Sketch A4.9  getting the results

Sketch A4.10  displaying the results


Content

AI module A unit #4  of 2 32 www.elegantAI.org



The two examples so far have been regression tasks, so now we need a 
classification task. We will try to identify which way the mouse is 
moving, either up, down, left, or right. First, we will create some synthetic 
data to train the model on. 


The model is then trained on this data over a number of epochs until we 
are happy with the result. We are going to be careful that there is no 
underfitting or overfitting. 


When the model is trained, we can test it by moving the mouse in each 
direction to see how well it performs. Remember that this is a relatively 
simple example and has many drawbacks and omissions, but it demonstrates 
a simple classification task. 


❗ keep the index.html file as it was for the previous three units. We will 
be using ml5.js as before, so make sure that you have the line of code in 
the index.html file. 


Introduction to mouse gesture with ml5.js

AI module A unit #4  of 3 32 www.elegantAI.org



We start with our basic sketch.


Sketch A4.1 our starting sketch

function setup() 

{

  createCanvas(400, 400)

}

function draw() 

{

  background(220)

}

AI module A unit #4  of 4 32 www.elegantAI.org



We are using synthetic data once again. This time, rather than generating 
it, we will hard-code it. You will notice that it is an array of objects. 
Each object has three elements: 


🀄  the x component of a vector, 

🀄  the y component of the vector, and 

🀄  the label indicating which direction it is going in. 


You may notice that the units are between 0 and 1. We have effectively 
normalised the data already, so no need to do it again. We have two sets 
of data for each movement: left, right, up, and down. This is a very 
small dataset, but we will see how well it does once we start training it. 


The data is a vector, which is the amount the mouse has moved from the 
relative position of (0, 0). 


The data

AI module A unit #4  of 5 32 www.elegantAI.org



Add in the data as shown below. I have kept it very simple and very 
obvious. Either +1, -1, +0.1, -0.1 depending on the relevant direction. 


🗒  Notes

I hope this seems fairly straightforward. The format is for a JSON-type 
array.


Sketch A4.2 adding the data

let data = [

  {x: 1, y: 0.1, label: "right"},

  {x: 1, y: -0.1, label: "right"},

  {x: -1, y: 0.1, label: "left"},

  {x: -1, y: -0.1, label: "left"},

  {x: 0.1, y: 1, label: "down"},

  {x: -0.1, y: 1, label: "down"},

  {x: 0.1, y: -1, label: "up"},

  {x: -0.1, y: -1, label: "up"}

]

function setup() 

{

  createCanvas(400, 400)

}

function draw() 

{

  background(220)

}

AI module A unit #4  of 6 32 www.elegantAI.org



🌻  Challenges

1. You could adjust some of the values, making them more random, so 

that they are not so obvious.

2. Increase the size of the dataset.

3. You could think about how you would collect and then save the data to 

be loaded (maybe for another time). 


🛠  Code Explanation

let data = [. . .] Create an array of objects

{x: 1, y: 0.1, label: "right"},
This is an object with two vectors and a 
label, this moves the coordinates to the 
right and slightly downwards

{x: -0.1, y: -1, label: "up"}
This is an object with two vectors and a 
label, this moves the coordinates slightly 
to the left and upwards

AI module A unit #4  of 7 32 www.elegantAI.org



You should be familiar with building the model now. We are going to create 
a neural network model and call it nn. We will give the neural network 
the following options: 

- It is a classification task. 

- Set debug to true, which will show the progress of the training (you 

can set it to false later).  


Sketch A4.3 building the model

let nn

let data = [

  { x: 1, y: 0.1, label: "right"},

  { x: 1, y: -0.1, label: "right"},

  { x: -1, y: 0.1, label: "left"},

  { x: -1, y: -0.1, label: "left"},

  { x: 0.1, y: 1, label: "down"},

  { x: -0.1, y: 1, label: "down"},

  { x: 0.1, y: -1, label: "up"},

  { x: -0.1, y: -1, label: "up"}

]

function setup() 

{

  createCanvas(400, 400)

  ml5.setBackend("webgl")

  let options = {

    task: "classification", 

    debug: true

  }

  nn = ml5.neuralNetwork(options)

}

function draw() 

{

AI module A unit #4  of 8 32 www.elegantAI.org



🗒  Notes

We are building the model just as we have done before.


  background(220)

}

AI module A unit #4  of 9 32 www.elegantAI.org



The for() loop (let items of data) will pull all the datapoints in the 
data array into another array called items. We can then create an array 
of inputs based on the x and y values. The output array then can collect 
all the labels that go with those input vectors. We then add this dataset 
to the neural network model nn.addData(inputs, outputs).


Sketch A4.4 adding the data training the model

let nn

let data = [

  { x: 1, y: 0.1, label: "right"},

  { x: 1, y: -0.1, label: "right"},

  { x: -1, y: 0.1, label: "left"},

  { x: -1, y: -0.1, label: "left"},

  { x: 0.1, y: 1, label: "down"},

  { x: -0.1, y: 1, label: "down"},

  { x: 0.1, y: -1, label: "up"},

  { x: -0.1, y: -1, label: "up"}

]

function setup() 

{

  createCanvas(400, 400)

  ml5.setBackend("webgl")

  let options = {

    task: "classification", 

    debug: true

  }

  nn = ml5.neuralNetwork(options)

  for (let item of data)

  {

    let inputs = [item.x, item.y]

    let outputs = [item.label]

    nn.addData(inputs, outputs)

AI module A unit #4  of 10 32 www.elegantAI.org



🗒  Notes

It pulls all the x, y and label values from the array and adds this data 
to the neural network model (nn). This is similar to the regression 
tasks, but there is a slightly different approach for classification 
tasks. 


  }

}

function draw() 

{

  background(220)

}

AI module A unit #4  of 11 32 www.elegantAI.org



After we have added the data, we are going to train it with nn.train(), 
with a callback finishedTraining which will let us know when it has 
finished. The callback is a function; it will help us to keep track of what is 
happening. To help us at this stage, we will console log the status. The 
default is training, and when it has finished training, the status will 
change to ready.


Sketch A4.5 training the model

let nn

let status = "training"

let data = [

  { x: 1, y: 0.1, label: "right"},

  { x: 1, y: -0.1, label: "right"},

  { x: -1, y: 0.1, label: "left"},

  { x: -1, y: -0.1, label: "left"},

  { x: 0.1, y: 1, label: "down"},

  { x: -0.1, y: 1, label: "down"},

  { x: 0.1, y: -1, label: "up"},

  { x: -0.1, y: -1, label: "up"}

]

function setup() 

{

  createCanvas(400, 400)

  ml5.setBackend("webgl")

  let options = {

    task: "classification", 

    debug: true

  }

  nn = ml5.neuralNetwork(options)

  for (let item of data)

  {

    let inputs = [item.x, item.y]

AI module A unit #4  of 12 32 www.elegantAI.org



🗒  Notes

The status should go from training to ready once it has finished 
training (you won’t see the word training). We also can see that 10 epochs 
are nowhere near enough, so we need to increase that hyperparameter.


🛠  Code Explanation


    let outputs = [item.label]

    nn.addData(inputs, outputs)

  }

  nn.train(finishedTraining)

}

function finishedTraining()

{

  status = "ready"

  console.log(status)

}

function draw() 

{

  background(220)

}

let status = "training" This is a string variable that is initialised to “training”  

status = "ready" The string variable value is now “ready”

AI module A unit #4  of 13 32 www.elegantAI.org



 

AI module A unit #4  of 14 32 www.elegantAI.org

Figure A4.5



Clearly, the loss function was still going down, so we will try 250 epochs 
and see if that works. We can just add it straight into the nn.train() 
function, just a shorthand formatting version.  


Sketch A4.6 epochs

let nn

let status = "training"

let data = [

  { x: 1, y: 0.1, label: "right"},

  { x: 1, y: -0.1, label: "right"},

  { x: -1, y: 0.1, label: "left"},

  { x: -1, y: -0.1, label: "left"},

  { x: 0.1, y: 1, label: "down"},

  { x: -0.1, y: 1, label: "down"},

  { x: 0.1, y: -1, label: "up"},

  { x: -0.1, y: -1, label: "up"}

]

function setup() 

{

  createCanvas(400, 400)

  ml5.setBackend("webgl")

  let options = {

    task: "classification", 

    debug: true

  }

  nn = ml5.neuralNetwork(options)

  for (let item of data)

  {

    let inputs = [item.x, item.y]

    let outputs = [item.label]

    nn.addData(inputs, outputs)

AI module A unit #4  of 15 32 www.elegantAI.org



🗒  Notes

You will see that it was still going down even after 250 epochs, so it may 
continue to reduce; however, it is probably overfitting after, say, 100 
epochs. The reason for such a high number of epochs compared to our 
other examples could be that it is a tiny dataset. If you move your mouse 
over the chart, it gives you the value of the loss function. My effort was 
0.009, which is pretty low. 


🌻  Challenge

Try an even larger number of epochs. 


🛠  Code Explanation


  }

  nn.train({epochs: 250}, finishedTraining)

}

function finishedTraining()

{

  status = "ready"

  console.log(status)

}

function draw() 

{

  background(220)

}

nn.train({epochs: 250}, 
finishedTraining)

Specifying the number of epochs within the 
training fucntion

AI module A unit #4  of 16 32 www.elegantAI.org



 

AI module A unit #4  of 17 32 www.elegantAI.org

Figure A4.6



What we want to do now is move the mouse in such a way that we can 
use the model to predict what movement it has made, either up, down, 
left, or right. So we need two variables for the start and end of the 
mouse movement. The movement starts when the mouse is clicked and 
keeps going while it is dragged (and then stops dragging). So we have two 
vectors for the start and for the end. 


Sketch A4.7 mouse vectors

let nn

let status = "training"

let start

let end

let data = [

  { x: 1, y: 0.1, label: "right"},

  { x: 1, y: -0.1, label: "right"},

  { x: -1, y: 0.1, label: "left"},

  { x: -1, y: -0.1, label: "left"},

  { x: 0.1, y: 1, label: "down"},

  { x: -0.1, y: 1, label: "down"},

  { x: 0.1, y: -1, label: "up"},

  { x: -0.1, y: -1, label: "up"}

]

function setup() 

{

  createCanvas(400, 400)

  ml5.setBackend("webgl")

  let options = {

    task: "classification", 

    debug: true

  }

  nn = ml5.neuralNetwork(options)

  for (let item of data)

AI module A unit #4  of 18 32 www.elegantAI.org



🗒  Notes

Nothing will happen just yet; we are just collecting data from the mouse.


  {

    let inputs = [item.x, item.y]

    let outputs = [item.label]

    nn.addData(inputs, outputs)

  }

  nn.train({epochs: 250}, finishedTraining)

}

function finishedTraining()

{

  status = "ready"

  console.log(status)

}

function draw() 

{

  background(220)

}

function mousePressed()

{

  start = createVector(mouseX, mouseY)

}

function mouseDragged()

{

  end = createVector(mouseX, mouseY)

}

AI module A unit #4  of 19 32 www.elegantAI.org



🛠  Code Explanation

start = createVector(mouseX, mouseY) We create a vector (called start) as 

soon as we click on the canvas

end = createVector(mouseX, mouseY) A final vector is created as we 
drag the mouse across the canvas

AI module A unit #4  of 20 32 www.elegantAI.org



We create another function to input the data into the model (which has 
been trained on the synthetic dataset). This function is called when the 
mouse is released after it has finished dragging. The key elements are 
described below: 


🀄  The direction (dir) of the movement is done by subtracting the two 
vectors (end and start).

🀄  We normalise them so their magnitudes are less than 1.

🀄  We then get the x and y components from the direction (dir.x, 
dir.y) vector.

🀄  We then have these as our new inputs to classify as either up, 
down, left, or right and put them into the model. 

🀄  The classification takes two arguments: one is the inputs and 
the other, gotResults, is the output. 


Sketch A4.8 classifying the mouse

let nn

let status = "training"

let start

let end

let data = [

  { x: 1, y: 0.1, label: "right"},

  { x: 1, y: -0.1, label: "right"},

  { x: -1, y: 0.1, label: "left"},

  { x: -1, y: -0.1, label: "left"},

  { x: 0.1, y: 1, label: "down"},

  { x: -0.1, y: 1, label: "down"},

  { x: 0.1, y: -1, label: "up"},

  { x: -0.1, y: -1, label: "up"}

]

function setup() 

{

  createCanvas(400, 400)

AI module A unit #4  of 21 32 www.elegantAI.org



  ml5.setBackend("webgl")

  let options = {

    task: "classification", 

    debug: true

  }

  nn = ml5.neuralNetwork(options)

  for (let item of data)

  {

    let inputs = [item.x, item.y]

    let outputs = [item.label]

    nn.addData(inputs, outputs)

  }

  nn.train({epochs: 250}, finishedTraining)

}

function finishedTraining()

{

  status = "ready"

  console.log(status)

}

function draw() 

{

  background(220)

}

function mousePressed()

{

  start = createVector(mouseX, mouseY)

}

function mouseDragged()

{

AI module A unit #4  of 22 32 www.elegantAI.org



🗒  Notes

❗  Please note you will get a script error if you run this.

When we classify the movement of the mouse, we give it the inputs 
(dir.x, dir.y) plus a callback. This callback is a function which will 
carry the result. Next, we need to create a function called, you guessed it, 
gotResults() to make use of the result. 


🛠  Code Explanation


  end = createVector(mouseX, mouseY)

}

function mouseReleased()

{

  let dir = p5.Vector.sub(end, start)

  dir.normalize()

  let inputs = [dir.x, dir.y]

  nn.classify(inputs, gotResults)

}

let dir = p5.Vector.sub(end, start) We subtract the two vectors, end 
and start

dir.normalize()
The subtraction of those two vectors 
(called dir) is normalised to be 
between 0 and 1

let inputs = [dir.x, dir.y]
The inputs into the classify function 
are the x and y components of the 
vector

nn.classify(inputs, gotResults)
We give the inputs to the classify 
function and also give it a callback 
(gotResults)

AI module A unit #4  of 23 32 www.elegantAI.org



As we create the callback function gotResults(), we can see how well 
we are doing by putting the results in the console for now. The status 
changes from training to ready, and now it is expressed as one of the 
labels left, right, up, or down. 

❗  We will change the debug to false or remove it altogether. 


Sketch A4.9 getting the results

let nn

let status = "training"

let start

let end

let data = [

  { x: 1, y: 0.1, label: "right"},

  { x: 1, y: -0.1, label: "right"},

  { x: -1, y: 0.1, label: "left"},

  { x: -1, y: -0.1, label: "left"},

  { x: 0.1, y: 1, label: "down"},

  { x: -0.1, y: 1, label: "down"},

  { x: 0.1, y: -1, label: "up"},

  { x: -0.1, y: -1, label: "up"}

]

function setup() 

{

  createCanvas(400, 400)

  ml5.setBackend("webgl")

  let options = {

    task: "classification", 

    debug: false

  }

  nn = ml5.neuralNetwork(options)

AI module A unit #4  of 24 32 www.elegantAI.org



  for (let item of data)

  {

    let inputs = [item.x, item.y]

    let outputs = [item.label]

    nn.addData(inputs, outputs)

  }

  nn.train({epochs: 250}, finishedTraining)

}

function finishedTraining()

{

  status = "ready"

  console.log(status)

}

function draw() 

{

  background(220)

}

function mousePressed()

{

  start = createVector(mouseX, mouseY)

}

function mouseDragged()

{

  end = createVector(mouseX, mouseY)

}

function mouseReleased()

{

  let dir = p5.Vector.sub(end, start)

AI module A unit #4  of 25 32 www.elegantAI.org



🗒  Notes

This seems to work quite well. Remember to hold the button down as you 
move the mouse, and when you release the button, you should get the 
correct movement. 


🛠  Code Explanation


  dir.normalize()

  let inputs = [dir.x, dir.y]

  nn.classify(inputs, gotResults)

}

function gotResults(results)

{

  status = results[0].label

  console.log(status)

}

status = results[0].label We can now see the result of the mouse 
movement (drag) in the console

AI module A unit #4  of 26 32 www.elegantAI.org



 

AI module A unit #4  of 27 32 www.elegantAI.org

Figure A4.9



We want to see this in action. We want the result on the canvas and also 
draw a line showing the movement of the mouse. We will do all this in the 
draw() function. 

❗  Comment out the console logs


Sketch A4.10 displaying the results

let nn

let status = "training"

let start

let end

let data = [

  { x: 1, y: 0.1, label: "right"},

  { x: 1, y: -0.1, label: "right"},

  { x: -1, y: 0.1, label: "left"},

  { x: -1, y: -0.1, label: "left"},

  { x: 0.1, y: 1, label: "down"},

  { x: -0.1, y: 1, label: "down"},

  { x: 0.1, y: -1, label: "up"},

  { x: -0.1, y: -1, label: "up"}

]

function setup() 

{

  createCanvas(400, 400)

  ml5.setBackend("webgl")

  let options = {

    task: “classification",

    debug: false

  }

  nn = ml5.neuralNetwork(options)

  for (let item of data)

AI module A unit #4  of 28 32 www.elegantAI.org



  {

    let inputs = [item.x, item.y]

    let outputs = [item.label]

    nn.addData(inputs, outputs)

  }

  nn.train({epochs: 250}, finishedTraining)

}

function finishedTraining()

{

  status = "ready"

  // console.log(status)

}

function draw() 

{

  background(220)

  textAlign(CENTER, CENTER)

  textSize(64)

  text(status, width/2, height/2)

  if (start && end)

  {

    strokeWeight(8)

    line(start.x, start.y, end.x, end.y)

  }

}

function mousePressed()

{

  start = createVector(mouseX, mouseY)

}

function mouseDragged()

AI module A unit #4  of 29 32 www.elegantAI.org



🗒  Notes

We don’t need the console logs anymore as we are writing straight to the 
canvas.


🌻  Challenge

 Add some colour or other event.


🛠  Code Explanation


{

  end = createVector(mouseX, mouseY)

}

function mouseReleased()

{

  let dir = p5.Vector.sub(end, start)

  dir.normalize()

  let inputs = [dir.x, dir.y]

  nn.classify(inputs, gotResults)

}

function gotResults(results)

{

  status = results[0].label

  // console.log(status)

}

textAlign(CENTER, CENTER) Puts the complete text in the 
centre of the text co-ordinates

textSize(64) Nice and big text

text(status, width/2, height/2) The status has the string values

if (start && end) Condition, draws the line when we 
have a start AND end vector

line(start.x, start.y, end.x, end.y) Draw the line to those two vectors

AI module A unit #4  of 30 32 www.elegantAI.org



AI module A unit #4  of 31 32 www.elegantAI.org

Figure A4.10c 

move and release upwards

Figure A4.10d 

and then down

Figure A4.10a 

we are training

Figure A4.10b 

we are ready (training complete)



AI module A unit #4  of 32 32 www.elegantAI.org

Figure A4.10e 

move to the left

Figure A4.10f 

and now to the right


