
Artificial
Intelligence

Module A

Unit #5

p5.js code
snippets 2

Module A Unit #5 snippets 2

Introduction to coding snippets 2

Sketch A5.1 strings

Sketch A5.2 adding two strings

Sketch A5.3 strings as variables

Sketch A5.4 the keyPressed() function

What is the difference between == versus ===

Sketch A5.5 the colour color() function

Sketch A5.6 sliders

Sketch A5.7 another shape, the square

Sketch A5.8 the centre of the square

Introduction to the Video

Sketch A5.9 video capture

Sketch A5.10 returning the canvas

Sketch A5.11 video on the canvas

Sketch A5.12 hide the video

Sketch A5.13 flipping the video

Introduction to Pixels

Sketch A5.14 new starting sketch

Sketch A5.15 pixel array formula

Sketch A5.16 changing the pixels

Sketch A5.17 orange pixels

Sketch A5.18 return of the video

Sketch A5.19 pixelating the image

Sketch A5.20 brightness grey scale

Content

AI module A unit #5 of 2 53 www.elegantAI.org

http://www.elegantAI.org

Some more useful snippets and information relevant to the next module.
Just work through them, play, experiment, and make sure you can follow
the logic. Create something interesting yourself; it is the best way to
learn.

We will be exploring how to incorporate video into our coding, in particular
the webcam (if you have one), and also what we can do to all the pixels on
the canvas.

Introduction to p5.js code snippets part 2

AI module A unit #5 of 3 53 www.elegantAI.org

http://www.elegantAI.org

We have floats (numbers with a decimal place) and integers (numbers
without a decimal place, whole numbers). Another data type is the
string, which is either a letter, word, series of letters (and numbers), or
even a number. It is then treated as text rather than an integer or a
float. A string will have speech marks. You can usually use either single
or double speech marks but never both in the same string. We will use it
as a single letter or as a word or phrase.

🗒 Notes

Either single or double speech marks work.

Sketch A5.1 strings

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 textSize(50)

 text('hello', 100, 100)

 text("hello", 100, 150)

}

AI module A unit #5 of 4 53 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #5 of 5 53 www.elegantAI.org

Figure A5.1

http://www.elegantAI.org

We can add strings together.

🗒 Notes

Just adding two strings together leaves no gap, so leave an empty string in
between.

Sketch A5.2 adding two strings

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 textSize(50)

 text("hello" + " " + "you", 100, 100)

}

AI module A unit #5 of 6 53 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #5 of 7 53 www.elegantAI.org

Figure A5.2

http://www.elegantAI.org

❗ Starting a new sketch

When we include a number and treat it as a string, it does not behave like
a number anymore (except in certain situations).

🗒 Notes

They behave quite differently.

🌻 Challenge

Play around with this concept and get used to how strings and integers
work. Be careful, as strings can suddenly start behaving as integers or
floats.

Sketch A5.3 strings as variables

let x = "20"

let y

function setup()

{

 createCanvas(400, 400)

}

function draw()

{
 background(220)

 textSize(50)

 y = x + 16

 text(x, 100, 100)

 text(y, 100, 150)

 text(x + y, 100, 200)

}

AI module A unit #5 of 8 53 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #5 of 9 53 www.elegantAI.org

Figure A5.3

http://www.elegantAI.org

❗ Starting a new sketch

You can use the keyboard as well as the mouse to interact with the
sketch. Here we change the colour of the circle from black to white and
back again by pressing the w key for white fill, and the b key for black fill.

❗ You do need to click on the canvas after you have, otherwise it will
think you are still typing your code.

Sketch A5.4 the keyPressed() function

let value = 0

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(200)

 fill(value)

 circle(width/2, height/2, 200)

}

function keyPressed()

{

 if (key === 'w')

 {

 value = 255

 }

 else if (key === 'b')

 {

 value = 0

AI module A unit #5 of 10 53 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

This only accepts lowercase. If that is a problem whereby there might be
a mixture of uppercase and lowercase, then we can use another function
to always make it uppercase.

🌻 Challenge

Try other letters or use ENTER or LEFT_ARROW as the keys.

🛠 Code Explanation

 }

}

function keyPressed() Waits for a key to be pressed

if (key === 'w') If the lowercase w is pressed

else if (key === 'b') Or the lowercase b is pressed

AI module A unit #5 of 11 53 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #5 of 12 53 www.elegantAI.org

Figure A5.4

http://www.elegantAI.org

In JavaScript, both == and === are used to compare values, but they have
subtle differences, although most of the time either will work.

🀄 == (Loose Equality)
Compares values after performing type coercion (automatic conversion
between data types). For example, '5' == 5 will evaluate to true because
JavaScript converts the string "5" to the number 5 before comparison.

🀄 === (Strict Equality)
Compares both the values and the data types of the operands. For
example, '5' === 5 will evaluate to false because the data types are
different (string and number).

Use === whenever possible, as it provides stricter and more predictable
comparisons. Use == only when you specifically intend to perform type
coercion. By using ===, you can avoid unexpected behaviour and write
more robust and maintainable JavaScript code.

This may seem academic, but there is a difference, even if it sometimes
feels a subtle one. I just wanted you to be aware that there is a
difference and a reason behind there being sometimes a == sign and at
other times a ===. If unsure, just use == unless you find there is a
problem.

What is the difference between == versus ===

AI module A unit #5 of 13 53 www.elegantAI.org

http://www.elegantAI.org

❗ Starting a new sketch.

This built-in function color(), is very useful when you want to carry the
RGB colour as a single variable rather than three separate variables. This is
illustrated below.

🗒 Notes

The above example simply carries the RGB in a single variable.

🌻 Challenges

1. Try other colours.

2. Try some alpha.

🛠 Code Explanation

Sketch A5.5 the colour color() function

let c

function setup()

{

 createCanvas(400, 400)

 c = color(255, 204, 0)

}

function draw()

{

 background(220)

 fill(c)

 circle(width/2, height/2, 200)

}

c = color(255, 204, 0) The variable holds the three rgb values

AI module A unit #5 of 14 53 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #5 of 15 53 www.elegantAI.org

Figure A5.5

http://www.elegantAI.org

❗ Starting a new sketch

A slider is another useful interactive element we can use alongside the
button already covered.

🗒 Notes

This just gives us a greyscale value to fill the circle.

🌻 Challenges

1. Have three sliders, one for each R, G, and B.

2. Move the slider around, with different sizes and values (min, max, and

initial values).

Sketch A5.6 sliders

let slider

function setup()

{

 createCanvas(400, 400)

 slider = createSlider(0, 255, 0)

 slider.position(100, 50)

 slider.size(200)

}

function draw()

{

 background(150)

 let c = slider.value()

 fill(c)

 circle(width/2, height/2, 200)

}

AI module A unit #5 of 16 53 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

let slider Slider variable name

slider = createSlider(0, 255, 0)
Creating the slider, with the minimum
value, the maximum value and the initial
starting value

slider.position(100, 50) Where to position it on the canvas

slider.size(200) The size of the slider

let c = slider.value() Taking the value of the slider

AI module A unit #5 of 17 53 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #5 of 18 53 www.elegantAI.org

Figure A5.6a

http://www.elegantAI.org

AI module A unit #5 of 19 53 www.elegantAI.org

Figure A5.6b

http://www.elegantAI.org

❗ Starting a new sketch

Introducing the square, we have drawn it in the centre of the canvas
with a side length of 100 pixels.

🗒 Notes

You will notice that, although we gave it the co-ordinates for the centre, it
drew the square with the top left-hand corner in the middle of the canvas.

🌻 Challenge

How do you think you could change that so that the square is in the
middle?

🛠 Code Explanation

Sketch A5.7 another shape, the square

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 square(width/2, height/2, 100)

}

square(width/2, height/2, 100) Square in the middle of the canvas with a
side length of 100

AI module A unit #5 of 20 53 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #5 of 21 53 www.elegantAI.org

Figure A5.7

http://www.elegantAI.org

We can add a function called rectMode() that can move the origin co-
ordinates of the square to the centre.

🗒 Notes

The square is now in the middle of the canvas.

🌻 Challenge

Draw lots of squares with different positions and dimensions.

🛠 Code Explanation

Sketch A5.8 the centre of the square

function setup()

{

 createCanvas(400, 400)

 rectMode(CENTER)

}

function draw()

{

 background(220)

 square(width/2, height/2, 100)

}

rectMode(CENTER) Function to move the co-ordinates to the centre of the square

AI module A unit #5 of 22 53 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #5 of 23 53 www.elegantAI.org

Figure A5.8

http://www.elegantAI.org

We can use the built-in webcam of your computer in our code if you have
one; if not, then you will need to plug one in or skip this module. Most
laptops, computers, and tablets have a webcam these days. You could even
use your smartphone at a push if necessary (why not?).

The image comes in the size and ratio of 640x480 pixels. We will look at
ways we can integrate it into our code, and in further units, we will use
the webcam for machine learning.

❗ A few of the following units use a webcam of sorts, especially the pre-
trained units.

Introduction to using the video input

AI module A unit #5 of 24 53 www.elegantAI.org

http://www.elegantAI.org

❗ Starting a new sketch

The createCapture(VIDEO) function will ask the computer for access
to your webcam; you will need to give it permission.

🗒 Notes

The default size is 640x480 pixels displayed in the window.

🛠 Code Explanation

Sketch A5.9 video capture

let video

function setup()

{

 noCanvas()

 video = createCapture(VIDEO)

}

let video Create a variable to hold the video image

noCanvas() Remove the canvas

video = createCapture(VIDEO) Create the video from the webcam and
attribute it to the variable

AI module A unit #5 of 25 53 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #5 of 26 53 www.elegantAI.org

Figure A5.9

http://www.elegantAI.org

Replace the noCanvas() with createCanvas(640, 480) so we have a
canvas that we can fill with the video image. Add the background.

🗒 Notes

Unfortunately, we get the canvas with the video image below it.

Sketch A5.10 returning the canvas

let video

function setup()

{

 createCanvas(640, 480)

 background(220)

 video = createCapture(VIDEO)

}

AI module A unit #5 of 27 53 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #5 of 28 53 www.elegantAI.org

Figure A5.10

http://www.elegantAI.org

Now we are going to add the video to the canvas with the image()
function. We set the co-ordinates to the top left-hand corner of (0, 0).

🗒 Notes

This creates two images; the top one is drawn onto the canvas, and the
bottom one is the live video stream.

🌻 Challenges

1. Add dimensions to the image function: image(video, 0, 0, 320,

240). You should end up with an image half the size (actually a
quarter of the size!).

2. Change the co-ordinates of the image function to: image(video,
200, 200, 320, 240). It has now moved it across the canvas.

🛠 Code Explanation

Sketch A5.11 video on the canvas

let video

function setup()

{

 createCanvas(640, 480)

 background(220)

 video = createCapture(VIDEO)

}

function draw()

{

 image(video, 0, 0)

}

image(video, 0, 0) Draws an image to the canvas, in this case it is a video
and its co-ordinates are (0, 0)

AI module A unit #5 of 29 53 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #5 of 30 53 www.elegantAI.org

Figure A5.11

http://www.elegantAI.org

We can hide the video and just have it on the canvas.

🗒 Notes

We now have the one video on the canvas.

🛠 Code Explanation

Sketch A5.12 hide the video

let video

function setup()

{

 createCanvas(640, 480)

 background(220)

 video = createCapture(VIDEO)

 video.hide()

}

function draw()

{

 image(video, 0, 0)

}

video.hide() This hides the streaming video

AI module A unit #5 of 31 53 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #5 of 32 53 www.elegantAI.org

Figure A5.12

http://www.elegantAI.org

We can change the video so that it mirrors your movements, as if you
were looking in a mirror. This feels a little more intuitive.

🛠 Code Explanation

Sketch A5.13 flipping the video

let video

function setup()

{

 createCanvas(640, 480)

 background(220)

 video = createCapture(VIDEO, {flipped: true})

 video.hide()

}

function draw()

{

 image(video, 0, 0)

}

video = createCapture(VIDEO,
{flipped: true})

This reverses the image to make it more
like a mirror

AI module A unit #5 of 33 53 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #5 of 34 53 www.elegantAI.org

Figure A5.13

http://www.elegantAI.org

A canvas is made up of lots of pixels. All are very tiny and hard to see
with the naked eye. In a 400x400 canvas, there are 160,000 pixels. Each
pixel has four channels: a red, a green, a blue, and an alpha. The
alpha is the transparency, and all have values in the range 0 to 255.

Yet we can manipulate the pixels and even the channels by picking out the
individual elements that make up a pixel. We could take all the pixels and
make them green, and so on. There are two main functions we will use:
the first is called loadPixels(), which will look at all the pixels in the
canvas or the image and store them in a pixel array (all the red, green,
blue, and alpha for every pixel) in one long array (640,000 elements). So
to go from one pixel to another, we have to jump over four in the array.

Once we have done something to the pixels, we then use the other main
function called updatePixels() to display the new, changed pixels on
the canvas.

❗ We have to address pixel density because there are actually more
channels than four with HD, more on that later.

Introduction to the pixels

AI module A unit #5 of 35 53 www.elegantAI.org

http://www.elegantAI.org

❗ Starting a new sketch

We will have a canvas size of 320 x 240, which is half the dimensions of
the video image.

Sketch A5.14 new starting sketch

function setup()

{

 createCanvas(320, 240)

}

function draw()

{

 background(220)

}

AI module A unit #5 of 36 53 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #5 of 37 53 www.elegantAI.org

Figure A5.14

http://www.elegantAI.org

The function loadPixels() gets all the data points from all the pixels
and puts them into a pixel array. Every pixel has four values (as
mentioned), but we want every fourth index, where the index is just for
referencing the next pixel, not every element (of which there are four per
pixel). Hence, we jump every four elements in the pixel array.

We have a simple algorithm for getting every pixel, which is every fourth
element in the pixel array. We can then pick out the four elements from
each pixel and change them (if we want to), followed by updating the new
pixel array with the updatePixels() function.

To go through all the pixels in the array, we have a nested loop where we
start with the first line of pixels and work our way down. So that is why
we start the first nested loop with the y co-ordinate and then the x co-
ordinates. For each y value, we loop through all the x values before going
onto the next y value (one line at a time).

Sketch A5.15 pixel array formula

let x

let y

let index

function setup()

{

 createCanvas(320, 240)

}

function draw()

{

 background(220)

 loadPixels()

 for (y = 0; y < height; y++)

 {

 for (x = 0; x < width; x++)

 {

AI module A unit #5 of 38 53 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Nothing changes with the canvas; you should get the grey background. The
formula makes more sense when you plug in some values for y and for x.
All you are doing is giving the index value to every fourth element in the
array. Next, we will break down the four elements in a pixel further into
components of red, green, blue, and alpha.

🌻 Challenge

Put in the values for y = 0, x = 0, then x = 1, x = 2, and so on, and
you will, hopefully, see the logic of this algorithm.

🛠 Code Explanation

 index = (x + (y * width)) * 4

 }

 }

 updatePixels()

}

loadPixels() Loads all the pixels into an array

index = (x + (y * width)) * 4 A simple formula for working through the
pixel array four at a time

updatePixels() Updates the array and returns them to
the canvas

AI module A unit #5 of 39 53 www.elegantAI.org

http://www.elegantAI.org

Here we can give each pixel element, the red, the green, the blue, and
the alpha new values. We have a grey canvas where the red, green,
and blue all have the same value of 220. We usually just have the one
value for greyscale, but in reality, all three are the same; the alpha is
255 by default.

This may seem a bit confusing, but in the pixel array, which has all the
reds, greens, blues, and alphas for all the pixels. The index we have
created is for the actual pixel; so index + 0 is the first element, which
is red, index + 1 is the second, which is green, index + 2 is the
third element, which is blue, and index + 3 is the fourth element,
which is the alpha. Here we are going to give you the values of the
greyscale and then next change them to an orange colour.

❗ I have added an extra line of code pixelDensity(1) because there
are extra elements in the pixel array if the display is of a higher density,
and you get funny results. You can remove it if it causes any problems.

Sketch A5.16 changing the pixels

let x

let y

let index

function setup()

{

 createCanvas(320, 240)

 pixelDensity(1)

}

function draw()

{

 background(220)

 loadPixels()

 for (y = 0; y < height; y++)

 {

AI module A unit #5 of 40 53 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

At present, you simply get the same grey canvas.

🛠 Code Explanation

 for (x = 0; x < width; x++)

 {

 index = (x + (y * width)) * 4

 pixels[index + 0] = 220

 pixels[index + 1] = 220

 pixels[index + 2] = 220

 pixels[index + 3] = 255

 }

 }

 updatePixels()

}

pixels[index + 0] = 220 The red element of the pixel value

pixels[index + 1] = 220 The green element of the pixel value

pixels[index + 2] = 220 The blue element of the pixel value

pixels[index + 3] = 255 The alpha element of the pixel value

AI module A unit #5 of 41 53 www.elegantAI.org

http://www.elegantAI.org

Now we can play around with the pixel element values.

Sketch A5.17 orange pixels

let x

let y

let index

function setup()

{

 createCanvas(320, 240)

 pixelDensity(1)

}

function draw()

{

 background(220)

 loadPixels()

 for (y = 0; y < height; y++)

 {

 for (x = 0; x < width; x++)

 {

 index = (x + (y * width)) * 4

 pixels[index + 0] = 255

 pixels[index + 1] = 100

 pixels[index + 2] = 0

 pixels[index + 3] = 255

 }

 }

 updatePixels()

}

AI module A unit #5 of 42 53 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We now have a nice, bright orange canvas.

🌻 Challenge

Try other combinations of colours and alpha.

AI module A unit #5 of 43 53 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #5 of 44 53 www.elegantAI.org

Figure A5.17

http://www.elegantAI.org

Adding in a lot of familiar code to return the video to the canvas, we
introduce the video.size() function in setup() and a new pixel array
for the video. The loadPixels() function takes the pixels from the
canvas (not the video). The pixel array is updated with the video pixels
array through the nested loop and then updates the pixels in the canvas.

Sketch A5.18 return of the video

let video

let x

let y

let index

function setup()

{

 createCanvas(320, 240)

 pixelDensity(1)

 video = createCapture(VIDEO, {flipped: true})

 video.size(320, 240)

 video.hide()

}

function draw()

{

 background(220)

 video.loadPixels()

 loadPixels()

 for(y = 0; y < height; y++)

 {

 for(x = 0; x < width; x++)

 {

 index = (x + (y * width)) * 4

 pixels[index + 0] = video.pixels[index + 0]

 pixels[index + 1] = video.pixels[index + 1]

AI module A unit #5 of 45 53 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We now have an image drawn onto the canvas. This means we can
manipulate the image.

🛠 Code Explanation

 pixels[index + 2] = video.pixels[index + 2]

 pixels[index + 3] = video.pixels[index + 3]

 }

 }

 updatePixels()

}

video.size(320, 240) Alter the size of the video image

video.loadPixels() Loading all the video pixels into a new array

pixels[index + 0] =
video.pixels[index + 0]

Changing the pixel array with the new pixel
array values from the video

AI module A unit #5 of 46 53 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #5 of 47 53 www.elegantAI.org

Figure A5.18

http://www.elegantAI.org

Another useful technique is to pixelate the image. We will use this in one
of the units later. All the changes are highlighted in blue. It looks a lot,
but they are mostly just new variables. We change the size of the video
by 1/16th. Then we scale it back up to fill the canvas. The pixels are drawn
from the new video size, which is a lot smaller, and if you could see it, it
would be quite blurry.

❗ Don’t forget to remove the updatePixels() near the end of the
code.

Sketch A5.19 pixelating the image

let video

let x

let y

let index

let r

let g

let b

let a

let vScale = 16

function setup()

{

 createCanvas(320, 240)

 pixelDensity(1)

 video = createCapture(VIDEO, {flipped: true})

 video.size(width / vScale, height / vScale)

 video.hide()

}

function draw()

{

 background(220)

 video.loadPixels()

AI module A unit #5 of 48 53 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

This takes the original video image, scans each pixel for the red, green,
blue, alpha and then scales it up to fill the canvas. A square is then
filled with the colour of the original image. We reduce the image by
vScale, analyse the image and then scale it back up to full canvas size.

🌻 Challenges

1. Change the vScale (you may get an error message)

2. Change the shape to a circle

 loadPixels()

 for(y = 0; y < video.height; y++)

 {

 for(x = 0; x < video.width; x++)

 {

 index = (x + (y * video.width)) * 4

 r = video.pixels[index + 0]

 g = video.pixels[index + 1]

 b = video.pixels[index + 2]

 a = video.pixels[index + 3]

 fill(r, g, b, a)

 square(x * vScale, y * vScale, vScale)

 }

 }

 // updatePixels()

}

AI module A unit #5 of 49 53 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #5 of 50 53 www.elegantAI.org

Figure A5.19

http://www.elegantAI.org

We can now take the average of the three colours in each pixel and call
that value bright. We halve the size of the squares. I have added
floor() when calculating the video size as it kept throwing up errors at
certain vScale values. We also removed the lines around the boxes.

Sketch A5.20 brightness grey scale

let video

let x

let y

let index

let r

let g

let b

let vScale = 8

let bright

function setup()

{

 createCanvas(320, 240)

 pixelDensity(1)

 video = createCapture(VIDEO, {flipped: true})

 video.size(floor(width/vScale), floor(height/vScale))

 video.hide()

 noStroke()

}

function draw()

{

 background(0)

 video.loadPixels()

 loadPixels()

 for(y = 0; y < video.height; y++)

AI module A unit #5 of 51 53 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Now we have added the video in as before, but we have added the values
of the red, green, and blue and divided by three to get the average
brightness. This is not the same as the alpha (which we have ignored).

🛠 Code Explanation

 {

 for(x = 0; x < video.width; x++)

 {

 index = (x + (y * video.width)) * 4

 r = video.pixels[index + 0]

 g = video.pixels[index + 1]

 b = video.pixels[index + 2]

 a = video.pixels[index + 3]

 bright = (r + g + b)/3

 fill(bright)

 square(x * vScale, y * vScale, vScale)

 }

 }

}

video.size(floor(width/vScale),
floor(height/vScale))

Take the floor value for the dimensions of
the video size

bright = (r + g + b)/3 Average (bright) the colours in each pixel

fill(bright) Fill that square with that average, bright

AI module A unit #5 of 52 53 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #5 of 53 53 www.elegantAI.org

Figure A5.20

http://www.elegantAI.org

