
Artificial
Intelligence

Module A

Unit #7

cluster
regression

Module A Unit #7 cluster regression

Introduction to cluster regression

The index.html file

Sketch A7.1 basic starting model

Sketch A7.2 assigning a value

Sketch A7.3 assigning the keys

Sketch A7.4 drawing the circles

Sketch A7.5 defining the inputs

Sketch A7.6 collecting the data

Sketch A7.7 training button

Sketch A7.8 training

Sketch A7.9 the training function

Sketch A7.10 epochs

Sketch A7.11 predicting

Sketch A7.12 prediction results

Sketch A7.13 some refinements

Content

AI module A unit #7 of 2 37 www.elegantAI.org

http://www.elegantAI.org

In this module, we will describe a simple model for regression. This is
very similar to the classification one you have just done. The main
difference is that the outcome (output) is a value between 0 and 255,
compared to the classification of the labels A, B, C, or D.

Here, we will click on the canvas to create a cluster of white circles and a
cluster of black circles. We will train it on those data points and then
predict what shade of grey the canvas is between those data points. It is,
in effect, going to interpolate using a neural network.

Introduction to cluster regression

AI module A unit #7 of 3 37 www.elegantAI.org

http://www.elegantAI.org

The index.html file and the requisite ml5.js library.

The index.html file

<!DOCTYPE html>

<html lang="en">

 <head>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.11.1/p5.js"></script>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.11.1/addons/p5.sound.min.js"></script>

 <script src="https://unpkg.com/ml5@1/dist/ml5.min.js"></
script>

 <link rel="stylesheet" type="text/css" href="style.css">

 <meta charset="utf-8" />

 </head>

 <body>

 <main>

 </main>

 <script src="sketch.js"></script>

 </body>

</html>

AI module A unit #7 of 4 37 www.elegantAI.org

http://www.elegantAI.org

This is our starting sketch. We are creating the basic neural network
model, similar to the previous one. There are two inputs, x and y, and one
output, val, which will be the grey value between 0 and 255. The task is
regression, not classification.

🗒 Notes

The main points here are:

🀄 The task is now regression.

🀄 The inputs are still x, and y.

🀄 The output is a value called val.

🛠 Code Explanation

Sketch A7.1 basic starting model

let nn

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 let options = {

 inputs: ['x', 'y'],

 outputs: ['val'],

 task: 'regression',

 debug: 'true'

 }

 nn = ml5.neuralNetwork(options)

 background(220)

}

task: 'regression' Defines this as a regression task

AI module A unit #7 of 5 37 www.elegantAI.org

http://www.elegantAI.org

We want to assign a value to the circle (rather than a label). To keep it
simple, we are using w for white (with a value of 255) and b for black
(assigning a value of 0). These are the fill colours (and values); they will be
the data we train the model on.

🗒 Notes

We will have two target labels, w for white and b for black.

Sketch A7.2 assigning a value

let nn

let targetLabel = 'w'

let col = {

 w: 255,

 b: 0

}

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 let options = {

 inputs: ['x', 'y'],

 outputs: ['val'],

 task: 'regression',

 debug: 'true'

 }

 nn = ml5.neuralNetwork(options)

 background(220)

}

AI module A unit #7 of 6 37 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

let targetLabel = 'w' We define and initialise the target label as w

let col = {w: 255, b: 0} This is defining the values of the target labels as
an object array

AI module A unit #7 of 7 37 www.elegantAI.org

http://www.elegantAI.org

When we want to change the letter of the targetLabel, we use the
keyPressed() function to define the label and attribute a value to the
data point. So, with a w we will give it a value of 255, and with b, we will
give it a value of 0.

Sketch A7.3 assigning the keys

let nn

let targetLabel = 'w'

let col = {

 w: 255,

 b: 0

}

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 let options = {

 inputs: ['x', 'y'],

 outputs: ['val'],

 task: 'regression',

 debug: 'true'

 }

 nn = ml5.neuralNetwork(options)

 background(220)

}

function keyPressed()

{

 targetLabel = key

}

AI module A unit #7 of 8 37 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

All that happens at this stage is that we are changing the value of the
target label.

🛠 Code Explanation

targetLabel = key
The variable targetLabel will take whatever letter you
type in. Which should be the letter b or w for this
exercise

AI module A unit #7 of 9 37 www.elegantAI.org

http://www.elegantAI.org

There is quite a lot happening here. We have a targetLabel of w which
has an initial value. The col() function takes the value from the object
array col = {w: 255, b: 0} and gives it to the targetVal variable,
which in turn is used to fill() the circle. We aren’t bothering with the
letters in the circles this time, just the colour. We introduce the
mousePressed() function to draw the circles when we click on the
canvas.

Sketch A7.4 drawing the circles

let nn

let targetLabel = 'w'

let state = 'collection'

let col = {

 w: 255,

 b: 0

}

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 let options = {

 inputs: ['x', 'y'],

 outputs: ['val'],

 task: 'regression',

 debug: 'true'

 }

 nn = ml5.neuralNetwork(options)

 background(220)

}

function keyPressed()

{

AI module A unit #7 of 10 37 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

When you click on the canvas, you get the white circle by default. When
you press the letter b and then click on the canvas, the circle is black (0).
This continues until you press w, then it will fill the circle with white
(255).

🛠 Code Explanation

 targetLabel = key

}

function mousePressed()

{

 let targetVal = col[targetLabel]

 fill(targetVal)

 circle(mouseX, mouseY, 25)

}

let targetVal = col[targetLabel]
Takes the value of the target label, it is
an object array hence the square
brackets []

fill(targetVal) Fills the circle with the value of the
target label

circle(mouseX, mouseY, 25) Draws the circle at the coordinates of
the mousePressed()

AI module A unit #7 of 11 37 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #7 of 12 37 www.elegantAI.org

Figure A7.4

http://www.elegantAI.org

We want to collect the data points from the canvas, through the
mousePressed() function. The input data is the mouseX and mouseY
coordinates.

Sketch A7.5 defining the inputs

let nn

let targetLabel = 'w'

let state = 'collection'

let col = {

 w: 255,

 b: 0

}

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 let options = {

 inputs: ['x', 'y'],

 outputs: ['val'],

 task: 'regression',

 debug: 'true'

 }

 nn = ml5.neuralNetwork(options)

 background(220)

}

function keyPressed()

{

 targetLabel = key

}

AI module A unit #7 of 13 37 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

All we have done is define the inputs, which you should be familiar with.

function mousePressed()

{

 let inputs = {

 x: mouseX,

 y: mouseY

 }

 let targetVal = col[targetLabel]

 fill(targetVal)

 circle(mouseX, mouseY, 25)

}

AI module A unit #7 of 14 37 www.elegantAI.org

http://www.elegantAI.org

We introduce the variable state to keep track of proceedings. We
initialise it to collection because we first need to collect the data. We
need the inputs for the data collection to be an array, so we create a data
object to pass into the neural network. We create an if() statement
inside the mousePressed() function and put some lines of code within
that if() statement. We only want to draw the circles when we are
collecting the data.

Sketch A7.6 collecting the data

let nn

let targetLabel = 'w'

let state = 'collection'

let col = {

 w: 255,

 b: 0

}

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 let options = {

 inputs: ['x', 'y'],

 outputs: ['val'],

 task: 'regression',

 debug: 'true'

 }

 nn = ml5.neuralNetwork(options)

 background(220)

}

function keyPressed()

{

AI module A unit #7 of 15 37 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

The data passed into the neural network are two object arrays, the inputs
and the target value. We can write these objects as one line of code if we
wish: target = {val: targetVal}. If there are many, it is nicer to
see them as a list.

🛠 Code Explanation

 targetLabel = key

}

function mousePressed()

{

 let inputs = {

 x: mouseX,

 y: mouseY

 }

 if (state == 'collection')

 {

 let targetVal = col[targetLabel]

 let target = {

 val: targetVal

 }

 nn.addData(inputs, target)

 fill(targetVal)

 circle(mouseX, mouseY, 25)

 }

}

if (state == 'collection') Check what state we are in

let target = {val: targetVal} We take the value of the target label as
an object array

nn.addData(inputs, target) We can now pass in the data to the
neural network ready for training

AI module A unit #7 of 16 37 www.elegantAI.org

http://www.elegantAI.org

Let us create a button to press to train the model. For the moment, we
have an empty train() function, but we will soon put some code in. We
only want to train it after we have finished adding the data points.

Sketch A7.7 training button

let nn

let targetLabel = 'w'

let state = 'collection'

let button

let col = {

 w: 255,

 b: 0

}

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 let options = {

 inputs: ['x', 'y'],

 outputs: ['val'],

 task: 'regression',

 debug: 'true'

 }

 nn = ml5.neuralNetwork(options)

 background(220)

 button = createButton('train')

 button.style('font-size', '30px')

 button.mousePressed(train)

}

function keyPressed()

AI module A unit #7 of 17 37 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We have a button that doesn’t do anything except tell you it is working
when you click on it!

🌻 Challenge

Add some colour to the button.

{

 targetLabel = key

}

function mousePressed()

{

 let inputs = {

 x: mouseX,

 y: mouseY

 }

 if (state == 'collection')

 {

 let targetVal = col[targetLabel]

 let target = {

 val: targetVal

 }

 nn.addData(inputs, target)

 fill(targetVal)

 circle(mouseX, mouseY, 25)

 }

}

function train()

{

 console.log('button working')

}

AI module A unit #7 of 18 37 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

button.mousePressed(train) When the button is pressed it calls the

train() function

AI module A unit #7 of 19 37 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #7 of 20 37 www.elegantAI.org

Figure A7.7

http://www.elegantAI.org

Here we will add the code for training the model and a callback for when
training is finished. I have added more epochs so we can see where the
training ceases to improve significantly. This is probably unnecessary
because of the small dataset. The state is now training.

It is time to add the next function, finishedTraining(), and change
the state to prediction. The console will tell us when it has finished
training and is ready to predict.

Sketch A7.8 training

let nn

let targetLabel = 'w'

let state = 'collection'

let button

let col = {

 w: 255,

 b: 0

}

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 let options = {

 inputs: ['x', 'y'],

 outputs: ['val'],

 task: 'regression',

 debug: 'true'

 }

 nn = ml5.neuralNetwork(options)

 background(220)

 button = createButton('train')

 button.style('font-size', '30px')

AI module A unit #7 of 21 37 www.elegantAI.org

http://www.elegantAI.org

 button.mousePressed(train)

}

function keyPressed()

{

 targetLabel = key

}

function mousePressed()

{

 let inputs = {

 x: mouseX,

 y: mouseY

 }

 if (state == 'collection')

 {

 let targetVal = col[targetLabel]

 let target = {

 val: targetVal

 }

 nn.addData(inputs, target)

 fill(targetVal)

 circle(mouseX, mouseY, 25)

 }

}

function train()

{

 state = 'training'

 nn.normalizeData()

 nn.train(finishedTraining)

}

AI module A unit #7 of 22 37 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

As you train the model, you may well find that the loss curve plummets to
zero in less than ten epochs. This is probably because there may not be
enough data points.

🌻 Challenge

1. Try more data points.

2. Try just one of each data point.

function finishedTraining()

{

 console.log('finished training')

 state = 'prediction'

}

AI module A unit #7 of 23 37 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #7 of 24 37 www.elegantAI.org

Figure A7.8

http://www.elegantAI.org

The next part is to predict the results, to determine the colour of the
pixel when we draw our circle on the canvas. We will want a greyscale of
colour, not just black or white, because a regression task gives us a sliding
scale of values.

We have set the state to prediction already. Next, we add an if()
statement to check to see if there is a change of state to prediction
inside the mousePressed() function to start making those predictions
with the predict() function. We will pick up the results in the callback
function gotResults().

❗ Don’t run this yet, we haven’t added the callback function yet.

Sketch A7.9 predicting

let nn

let targetLabel = 'w'

let state = 'collection'

let button

let col = {

 w: 255,

 b: 0

}

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 let options = {

 inputs: ['x', 'y'],

 outputs: ['val'],

 task: 'regression',

 debug: 'true'

 }

AI module A unit #7 of 25 37 www.elegantAI.org

http://www.elegantAI.org

 nn = ml5.neuralNetwork(options)

 background(220)

 button = createButton('train')

 button.style('font-size', '30px')

 button.mousePressed(train)

}

function keyPressed()

{

 targetLabel = key

}

function mousePressed()

{

 let inputs = {

 x: mouseX,

 y: mouseY

 }

 if (state == 'collection')

 {

 let targetVal = col[targetLabel]

 let target = {

 val: targetVal

 }

 nn.addData(inputs, target)

 fill(targetVal)

 circle(mouseX, mouseY, 25)

 }

 else if (state == 'prediction')

 {

 nn.predict(inputs, gotResults)

 }

}
AI module A unit #7 of 26 37 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

After we have finished collecting the data and finished training the
model, we are then in prediction mode. Next is the callback function
gotResults(), where we see what our results look like. The lack of the
gotResults() function will give you an error.

🛠 Code Explanation

function train()

{

 state = 'training'

 nn.normalizeData()

 nn.train(finishedTraining)

}

function finishedTraining()

{

 console.log('finished training')

 state = 'prediction'

}

nn.predict(inputs, gotResults) We receive the inputs and have a callback
function for the results

AI module A unit #7 of 27 37 www.elegantAI.org

http://www.elegantAI.org

We need to add in the function gotResults() so we can see the results
or predictions. After the training is completed, you will see the results
when you click on the canvas. The circles should be a bit grey in between
where your data points are; for each circle, it should fill with the
predicted colour value.

Sketch A7.10 prediction results

let nn

let targetLabel = 'w'

let state = 'collection'

let button

let col = {

 w: 255,

 b: 0

}

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 let options = {

 inputs: ['x', 'y'],

 outputs: ['val'],

 task: 'regression',

 debug: 'true'

 }

 nn = ml5.neuralNetwork(options)

 background(220)

 button = createButton('train')

 button.style('font-size', '30px')

 button.mousePressed(train)

}

AI module A unit #7 of 28 37 www.elegantAI.org

http://www.elegantAI.org

function keyPressed()

{

 targetLabel = key

}

function mousePressed()

{

 let inputs = {

 x: mouseX,

 y: mouseY

 }

 if (state == 'collection')

 {

 let targetVal = col[targetLabel]

 let target = {

 val: targetVal

 }

 nn.addData(inputs, target)

 fill(targetVal)

 circle(mouseX, mouseY, 25)

 }

 else if (state == 'prediction')

 {

 nn.predict(inputs, gotResults)

 }

}

function train()

{

 state = 'training'

 nn.normalizeData()

 nn.train(finishedTraining)
AI module A unit #7 of 29 37 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

This is the difference between classification and regression. You
can see the gradual change in the fill colour of the circles as you click
between the trained clusters of circles.

🌻 Challenge

You can look inside the results using the console.log(results) as
shown in the second image below.

🛠 Code Explanation

}

function finishedTraining()

{

 console.log('finished training')

 state = 'prediction'

}

function gotResults(results)

{

 fill(floor(results[0].value))

 circle(mouseX, mouseY, 25)

}

results[0].value This pulls the value from the prediction
results array at index [0]

fill(floor(results[0].value)) We use the floor so it is an integer

AI module A unit #7 of 30 37 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #7 of 31 37 www.elegantAI.org

Figure A7.10a

http://www.elegantAI.org

AI module A unit #7 of 32 37 www.elegantAI.org

Figure A7.10b: with console.log(results)

http://www.elegantAI.org

I have highlighted some refinements. This will keep the original circles and
their colour, but now when you click on the canvas, it will draw the shades
of grey on the canvas.

❗ Comment out debugging to hide the loss chart.

Sketch A7.11 some refinements

let nn

let targetLabel = 'w'

let state = 'collection'

let button

let col = {

 w: 255,

 b: 0

}

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 let options = {

 inputs: ['x', 'y'],

 outputs: ['val'],

 task: 'regression',

 // debug: 'true'

 }

 nn = ml5.neuralNetwork(options)

 background(220)

 button = createButton('train')

 button.style('font-size', '30px')

 button.mousePressed(train)

}

AI module A unit #7 of 33 37 www.elegantAI.org

http://www.elegantAI.org

function keyPressed()

{

 targetLabel = key

}

function mousePressed()

{

 let inputs = {

 x: mouseX,

 y: mouseY

 }

 if (state == 'collection')

 {

 let targetVal = col[targetLabel]

 let target = {

 val: targetVal

 }

 nn.addData(inputs, target)

 fill(targetVal)

 circle(mouseX, mouseY, 25)

 }

 else if (state == 'prediction')

 {

 nn.predict(inputs, gotResults)

 }

}

function train()

{

 state = 'training'

 nn.normalizeData()

 nn.train(finishedTraining)

}
AI module A unit #7 of 34 37 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We have added a little transparency and removed the stroke, and created
a larger circle.

🌻 Challenge

Consider how you might colour each pixel (not easy).

function finishedTraining()

{

 console.log('finished training')

 state = 'prediction'

}

function gotResults(results)

{

 mousePressed()

 {

 fill(floor(results[0].value), 100)

 noStroke()

 circle(mouseX, mouseY, 30)

 }

}

AI module A unit #7 of 35 37 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #7 of 36 37 www.elegantAI.org

Figure A7.11a as we move the mouse

http://www.elegantAI.org

AI module A unit #7 of 37 37 www.elegantAI.org

Figure A7.11b final look

http://www.elegantAI.org

