
Artificial
Intelligence

Module A

Unit #8

colour
predictor

Module A Unit #8 colour predictor

Introduction to colour predictor

The index.html file

Sketch A8.1 creating the data

Sketch A8.2 sliders

Sketch A8.3 adding the neural network

Sketch A8.4 adding the data

Sketch A8.5 normalising the data

Sketch A8.6 training the neural network

Sketch A8.7 classifying the colour

Sketch A8.8 the best prediction

Content

AI module A unit #8 of 2 31 www.elegantAI.org

http://www.elegantAI.org

Another seemingly simple exercise is to train the model to identify
reddish, greenish, and blueish colours. For this, we will provide a
small synthetic dataset in the form of a JSON-style file. We will train
the neural network on that data and see if it can learn these three
classifications for a variety of combinations of the RGB values.

This is, therefore, a classification task as we want it to select,
through the built-in softmax function, the most probable colour group. We
will use three sliders to change the amount of red, green, and blue.

Introduction to colour predictor

AI module A unit #8 of 3 31 www.elegantAI.org

http://www.elegantAI.org

A reminder to add the ml5.js line of code if you haven’t already.

The index.html

<!DOCTYPE html>

<html lang="en">

 <head>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.11.1/p5.js"></script>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.11.1/addons/p5.sound.min.js"></script>

 <script src="https://unpkg.com/ml5@1/dist/ml5.min.js"></
script>

 <link rel="stylesheet" type="text/css" href="style.css">

 <meta charset="utf-8" />

 </head>

 <body>

 <main>

 </main>

 <script src="sketch.js"></script>

 </body>

</html>

AI module A unit #8 of 4 31 www.elegantAI.org

http://www.elegantAI.org

We are going to create three labels: red-ish, green-ish, and blue-
ish. For each of these three labels, we are going to give them the RGB
numbers that are pretty close. For example, red-ish is (255, 0, 0),
(254, 0, 0), and (253, 0, 0), and do the same for the green-ish
and blue-ish.

🗒 Notes

This is another small dataset; in reality, you would have a much larger
dataset based on people’s options (labels), but this is simple enough to be
useful.

Sketch A8.1 creating the data

let data = [

 { r: 255, g: 0, b: 0, colour: "red-ish" },

 { r: 254, g: 0, b: 0, colour: "red-ish" },

 { r: 253, g: 0, b: 0, colour: "red-ish" },

 { r: 0, g: 255, b: 0, colour: "green-ish" },

 { r: 0, g: 254, b: 0, colour: "green-ish" },

 { r: 0, g: 253, b: 0, colour: "green-ish" },

 { r: 0, g: 0, b: 255, colour: "blue-ish" },

 { r: 0, g: 0, b: 254, colour: "blue-ish" },

 { r: 0, g: 0, b: 253, colour: "blue-ish" },

]

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

}

AI module A unit #8 of 5 31 www.elegantAI.org

http://www.elegantAI.org

🌻 Challenge

You could add more data.

🛠 Code Explanation

let data = [{r:, g:, b:, colour:},]
Creating a series of objects in an
array called data. These will be the
input data

AI module A unit #8 of 6 31 www.elegantAI.org

http://www.elegantAI.org

We are going to create three sliders to control the colour of the
background. We will give it an initial colour of red.

Sketch A8.2 Sliders

let data = [

 { r: 255, g: 0, b: 0, colour: "red-ish" },

 { r: 254, g: 0, b: 0, colour: "red-ish" },

 { r: 253, g: 0, b: 0, colour: "red-ish" },

 { r: 0, g: 255, b: 0, colour: "green-ish" },

 { r: 0, g: 254, b: 0, colour: "green-ish" },

 { r: 0, g: 253, b: 0, colour: "green-ish" },

 { r: 0, g: 0, b: 255, colour: "blue-ish" },

 { r: 0, g: 0, b: 254, colour: "blue-ish" },

 { r: 0, g: 0, b: 253, colour: "blue-ish" },

]

let r

let g

let b

let rSlider

let gSlider

let bSlider

function setup()

{

 createCanvas(400, 400)

 rSlider = createSlider(0, 255, 255).position(10, 20)

 gSlider = createSlider(0, 255, 0).position(10, 40)

 bSlider = createSlider(0, 255, 0).position(10, 60)

}

function draw()

AI module A unit #8 of 7 31 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

The slider has three arguments:

🀄 The first is the minimum value,

🀄 The second is the maximum value, and

🀄 The third is the starting value.

We give the red slider rSlider a starting value of 255, which is the
maximum.

🌻 Challenge

Have one of the others start at a different value.

🛠 Code Explanation

{

 r = rSlider.value()

 g = gSlider.value()

 b = bSlider.value()

 background(r, g, b)

}

createSlider(0, 255, 255) The third argument is the value of the
slider

createSlider(...).position(10, 20) The position is the x (10 pixels) and y
(20 pixels) co-ordinates of the slider

AI module A unit #8 of 8 31 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #8 of 9 31 www.elegantAI.org

Figure A8.2

http://www.elegantAI.org

Let’s introduce our neural network, as we have done numerous times
before.

Sketch A8.3 adding the neural network

let data = [

 { r: 255, g: 0, b: 0, colour: "red-ish" },

 { r: 254, g: 0, b: 0, colour: "red-ish" },

 { r: 253, g: 0, b: 0, colour: "red-ish" },

 { r: 0, g: 255, b: 0, colour: "green-ish" },

 { r: 0, g: 254, b: 0, colour: "green-ish" },

 { r: 0, g: 253, b: 0, colour: "green-ish" },

 { r: 0, g: 0, b: 255, colour: "blue-ish" },

 { r: 0, g: 0, b: 254, colour: "blue-ish" },

 { r: 0, g: 0, b: 253, colour: "blue-ish" },

]

let r

let g

let b

let rSlider

let gSlider

let bSlider

let nn

function setup()

{

 createCanvas(400, 400)

 rSlider = createSlider(0, 255, 255).position(10, 20)

 gSlider = createSlider(0, 255, 0).position(10, 40)

 bSlider = createSlider(0, 255, 0).position(10, 60)

 let options = {

 task: 'classification',

AI module A unit #8 of 10 31 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

As you can see, we have a classification task and set the debug to
true.

 debug: true

 }

 ml5.setBackend("webgl")

 nn = ml5.neuralNetwork(options)

}

function draw()

{

 r = rSlider.value()

 g = gSlider.value()

 b = bSlider.value()

 background(r, g, b)

}

AI module A unit #8 of 11 31 www.elegantAI.org

http://www.elegantAI.org

Now, to add the data to the neural network. We cycle through the data
array, giving the set of inputs and the colour label to a variable called
item. This holds the value of the red, green, and blue as well as the
colour label. However, we only pull out the r, g, and b values. The colour
values are the outputs for each set of corresponding r, g, b values.

Sketch A8.4 adding the data

let data = [

 { r: 255, g: 0, b: 0, colour: "red-ish" },

 { r: 254, g: 0, b: 0, colour: "red-ish" },

 { r: 253, g: 0, b: 0, colour: "red-ish" },

 { r: 0, g: 255, b: 0, colour: "green-ish" },

 { r: 0, g: 254, b: 0, colour: "green-ish" },

 { r: 0, g: 253, b: 0, colour: "green-ish" },

 { r: 0, g: 0, b: 255, colour: "blue-ish" },

 { r: 0, g: 0, b: 254, colour: "blue-ish" },

 { r: 0, g: 0, b: 253, colour: "blue-ish" },

]

let r

let g

let b

let rSlider

let gSlider

let bSlider

let nn

function setup()

{

 createCanvas(400, 400)

 rSlider = createSlider(0, 255, 255).position(10, 20)

 gSlider = createSlider(0, 255, 0).position(10, 40)

 bSlider = createSlider(0, 255, 0).position(10, 60)

AI module A unit #8 of 12 31 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Using the item variable seems a bit redundant, but you are taking them
from the complete array. It means you don’t accidentally change any values
in the dataset. This repeats for the length of the dataset.

🌻 Challenge

You could replace item with data[i] and remove all references to the
item variable.

 let options = {

 task: 'classification',

 debug: true

 }

 ml5.setBackend("webgl")

 nn = ml5.neuralNetwork(options)

 for (let i = 0; i < data.length; i++)

 {

 let item = data[i]

 let inputs = [item.r, item.g, item.b]

 let outputs = [item.colour]

 nn.addData(inputs, outputs)

 }

}

function draw()

{

 r = rSlider.value()

 g = gSlider.value()

 b = bSlider.value()

 background(r, g, b)

}

AI module A unit #8 of 13 31 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

let item = data[i] For each index if the dataset array

push it into the item variable

let inputs = [item.r, item.g, item.b] Each set of inputs are added

let outputs = [item.colour] The corresponding output is added

nn.addData(inputs, outputs) Both the inputs and outputs are
added to the neural network

AI module A unit #8 of 14 31 www.elegantAI.org

http://www.elegantAI.org

Next, we will normalise the data because we don’t want very large and
very small numbers in the neural network calculations.

Sketch A8.5 normalising the data

let data = [

 { r: 255, g: 0, b: 0, colour: "red-ish" },

 { r: 254, g: 0, b: 0, colour: "red-ish" },

 { r: 253, g: 0, b: 0, colour: "red-ish" },

 { r: 0, g: 255, b: 0, colour: "green-ish" },

 { r: 0, g: 254, b: 0, colour: "green-ish" },

 { r: 0, g: 253, b: 0, colour: "green-ish" },

 { r: 0, g: 0, b: 255, colour: "blue-ish" },

 { r: 0, g: 0, b: 254, colour: "blue-ish" },

 { r: 0, g: 0, b: 253, colour: "blue-ish" },

]

let r

let g

let b

let rSlider

let gSlider

let bSlider

let nn

function setup()

{

 createCanvas(400, 400)

 rSlider = createSlider(0, 255, 255).position(10, 20)

 gSlider = createSlider(0, 255, 0).position(10, 40)

 bSlider = createSlider(0, 255, 0).position(10, 60)

 let options = {

 task: 'classification',

AI module A unit #8 of 15 31 www.elegantAI.org

http://www.elegantAI.org

 debug: true

 }

 ml5.setBackend("webgl")

 nn = ml5.neuralNetwork(options)

 for (let i = 0; i < data.length; i++)

 {

 let item = data[i]

 let inputs = [item.r, item.g, item.b]

 let outputs = [item.colour]

 nn.addData(inputs, outputs)

 }

 nn.normalizeData()

}

function draw()

{

 r = rSlider.value()

 g = gSlider.value()

 b = bSlider.value()

 background(r, g, b)

}

AI module A unit #8 of 16 31 www.elegantAI.org

http://www.elegantAI.org

We will now train our neural network, setting the batch size to 16 and
the epochs to 128.

Sketch A8.6 training the neural network

let data = [

 { r: 255, g: 0, b: 0, colour: "red-ish" },

 { r: 254, g: 0, b: 0, colour: "red-ish" },

 { r: 253, g: 0, b: 0, colour: "red-ish" },

 { r: 0, g: 255, b: 0, colour: "green-ish" },

 { r: 0, g: 254, b: 0, colour: "green-ish" },

 { r: 0, g: 253, b: 0, colour: "green-ish" },

 { r: 0, g: 0, b: 255, colour: "blue-ish" },

 { r: 0, g: 0, b: 254, colour: "blue-ish" },

 { r: 0, g: 0, b: 253, colour: "blue-ish" },

]

let r

let g

let b

let rSlider

let gSlider

let bSlider

let nn

function setup()

{

 createCanvas(400, 400)

 rSlider = createSlider(0, 255, 255).position(10, 20)

 gSlider = createSlider(0, 255, 0).position(10, 40)

 bSlider = createSlider(0, 255, 0).position(10, 60)

 let options = {

 task: 'classification',

AI module A unit #8 of 17 31 www.elegantAI.org

http://www.elegantAI.org

 debug: true

 }

 ml5.setBackend("webgl")

 nn = ml5.neuralNetwork(options)

 for (let i = 0; i < data.length; i++)

 {

 let item = data[i]

 let inputs = [item.r, item.g, item.b]

 let outputs = [item.colour]

 nn.addData(inputs, outputs)

 }

 nn.normalizeData()

 const trainingOptions = {

 batchSize: 16,

 epochs: 128

 }

 nn.train(trainingOptions, finishedTraining)

}

function finishedTraining()

{

 console.log("finished training")

}

function draw()

{

 r = rSlider.value()

 g = gSlider.value()

 b = bSlider.value()

 background(r, g, b)

}

AI module A unit #8 of 18 31 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We do get a very nice curved loss function.

AI module A unit #8 of 19 31 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #8 of 20 31 www.elegantAI.org

Figure A8.6

http://www.elegantAI.org

We can now classify the colour as red-ish, green-ish, or blue-ish.
We create a classify() function where we input the new slider values
and classify the output, which is then sent to another function called
gotResults(). There we can have a look at the results to understand
what data we want. To look inside the data, we console.log the results.

Sketch A8.7 classifying the colour

let data = [

 { r: 255, g: 0, b: 0, colour: "red-ish" },

 { r: 254, g: 0, b: 0, colour: "red-ish" },

 { r: 253, g: 0, b: 0, colour: "red-ish" },

 { r: 0, g: 255, b: 0, colour: "green-ish" },

 { r: 0, g: 254, b: 0, colour: "green-ish" },

 { r: 0, g: 253, b: 0, colour: "green-ish" },

 { r: 0, g: 0, b: 255, colour: "blue-ish" },

 { r: 0, g: 0, b: 254, colour: "blue-ish" },

 { r: 0, g: 0, b: 253, colour: "blue-ish" },

]

let r

let g

let b

let rSlider

let gSlider

let bSlider

let nn

function setup()

{

 createCanvas(400, 400)

 rSlider = createSlider(0, 255, 255).position(10, 20)

 gSlider = createSlider(0, 255, 0).position(10, 40)

 bSlider = createSlider(0, 255, 0).position(10, 60)

AI module A unit #8 of 21 31 www.elegantAI.org

http://www.elegantAI.org

 let options = {

 task: 'classification',

 debug: true

 }

 ml5.setBackend("webgl")

 nn = ml5.neuralNetwork(options)

 for (let i = 0; i < data.length; i++)

 {

 let item = data[i]

 let inputs = [item.r, item.g, item.b]

 let outputs = [item.colour]

 nn.addData(inputs, outputs)

 }

 nn.normalizeData()

 const trainingOptions = {

 batchSize: 16,

 epochs: 128

 }

 nn.train(trainingOptions, finishedTraining)

}

function finishedTraining()

{

 console.log("finished training")

 classify()

}

function classify()

{

 const input = [r, g, b]

 nn.classify(input, gotResults)

}

AI module A unit #8 of 22 31 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

In the console, you get the following (see image below):

🀄 An array with three objects

🀄 Each object has a label and confidence score

🀄 The highest confidence score is the top one result[0]

🀄 The next highest is result[1]

🀄 The third is result[2]

🀄 We want the top one at index [0]

This means we only get the default RGB values; next, we need to get the
new values when we move the sliders

🛠 Code Explanation

function gotResults(results)

{

 console.log(results)

}

function draw()

{

 r = rSlider.value()

 g = gSlider.value()

 b = bSlider.value()

 background(r, g, b)

}

const input = [r, g, b] We use the default settings for the initial
slider which is red

AI module A unit #8 of 23 31 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #8 of 24 31 www.elegantAI.org

Figure A8.7

http://www.elegantAI.org

❗ Remove the console.log() in the gotResults() function as we
don’t need that information now.

Here we will be extracting the top result (index[0]) with the highest
confidence score and then printing the result as text on the canvas. We
initialise the label as a string (let label = " "). We add the
classify() function in the gotResults() function to check for
updates to the slider, so that every time you move the sliders you get an
instant update. We only train it once but classify repeatedly. If that is
unclear, work through the logic!

Sketch A8.8 the best prediction

let data = [

 { r: 255, g: 0, b: 0, colour: "red-ish" },

 { r: 254, g: 0, b: 0, colour: "red-ish" },

 { r: 253, g: 0, b: 0, colour: "red-ish" },

 { r: 0, g: 255, b: 0, colour: "green-ish" },

 { r: 0, g: 254, b: 0, colour: "green-ish" },

 { r: 0, g: 253, b: 0, colour: "green-ish" },

 { r: 0, g: 0, b: 255, colour: "blue-ish" },

 { r: 0, g: 0, b: 254, colour: "blue-ish" },

 { r: 0, g: 0, b: 253, colour: "blue-ish" },

]

let r

let g

let b

let rSlider

let gSlider

let bSlider

let nn

let label = " "

AI module A unit #8 of 25 31 www.elegantAI.org

http://www.elegantAI.org

function setup()

{

 createCanvas(400, 400)

 rSlider = createSlider(0, 255, 255).position(10, 20)

 gSlider = createSlider(0, 255, 0).position(10, 40)

 bSlider = createSlider(0, 255, 0).position(10, 60)

 let options = {

 task: 'classification',

 debug: true

 }

 ml5.setBackend("webgl")

 nn = ml5.neuralNetwork(options)

 for (let i = 0; i < data.length; i++)

 {

 let item = data[i]

 let inputs = [item.r, item.g, item.b]

 let outputs = [item.colour]

 nn.addData(inputs, outputs)

 }

 nn.normalizeData()

 const trainingOptions = {

 batchSize: 16,

 epochs: 128

 }

 nn.train(trainingOptions, finishedTraining)

}

function finishedTraining()

{

 console.log("finished training")

 classify()

}

AI module A unit #8 of 26 31 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

You will perhaps notice that the results aren’t perfect despite the loss
function looking pretty good. We have only provided a small amount of
data, but also we haven’t offered any change to most of the other
hyperparameters, which is something we could do.

🌻 Challenges

1. Change the number of hidden layers and nodes,

2. Change the batch size,

3. Change the learning rate

function classify()

{

 const input = [r, g, b]

 nn.classify(input, gotResults)

}

function gotResults(results)

{

 // console.log(results)

 label = results[0].label

 classify()

}

function draw()

{

 r = rSlider.value()

 g = gSlider.value()

 b = bSlider.value()

 background(r, g, b)

 textSize(64)

 text(label, width/4, height/2)

}

AI module A unit #8 of 27 31 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

let label = " " Define the label as a string

label = results[0].label Pulling the label from the classified results

AI module A unit #8 of 28 31 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #8 of 29 31 www.elegantAI.org

Figure A8.8a

http://www.elegantAI.org

AI module A unit #8 of 30 31 www.elegantAI.org

Figure A8.8b

http://www.elegantAI.org

AI module A unit #8 of 31 31 www.elegantAI.org

Figure A8.8c

http://www.elegantAI.org

