
Artificial
Intelligence

Module A

Unit #9

pixel
predictor

Module A Unit #9 pixel predictor

Introduction to pixel predictor

The index.html file

Sketch A9.1 starting sketch

Sketch A9.2 hiding the video

Sketch A9.3 mirrored

Sketch A9.4 video ready

Sketch A9.5 the size of the video

Sketch A9.6 resizing the video

Sketch A9.7 even smaller

Sketch A9.8 loading the pixels

Sketch A9.9 enlarged pixels

Sketch A9.10 neural network

Sketch A9.11 adding the slider output

Sketch A9.12 adding the buttons

Sketch A9.13 the training button

Sketch A9.14 getting the inputs

Sketch A9.15 adding an example

Sketch A9.16 training the model

Sketch A9.17 finished training

Sketch A9.18 predicting the movement

Sketch A9.19 predict ready

Content

AI module A unit #9 of 2 69 www.elegantAI.org

http://www.elegantAI.org

We will use a webcam from your device. If you don’t have one, then you
either miss this unit out or attach one manually. The image will be
reduced, flipped (mirrored), and then pixelated; this enables the model to
be trained on a dataset that isn’t too large.

Once it is trained, you will be able to move a circle across the canvas
through moving your head from side to side, alternatively holding your left
or right hand up. It will use images of you in certain positions and use this
data to train the model. The model is pretty similar to before.

Introduction to pixel predictor

AI module A unit #9 of 3 69 www.elegantAI.org

http://www.elegantAI.org

Just a reminder that your index.html file needs the ml5.js added.

index.html

<!DOCTYPE html>

<html lang="en">

 <head>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.11.1/p5.js"></script>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.11.1/addons/p5.sound.min.js"></script>

 <script src="https://unpkg.com/ml5@1/dist/ml5.min.js"></
script>

 <link rel="stylesheet" type="text/css" href="style.css">

 <meta charset="utf-8" />

 </head>

 <body>

 <main>

 </main>

 <script src="sketch.js"></script>

 </body>

</html>

AI module A unit #9 of 4 69 www.elegantAI.org

http://www.elegantAI.org

Give p5.js permission to access your webcam. What you should get instead
of the canvas is a video of yourself. It will be reversed (not mirrored).

🗒 Notes

You should have a nice video image of yourself; the dimensions should be
640 x 480.

🛠 Code Explanation

Sketch A9.1 starting sketch

let video

function setup()

{

 noCanvas()

 video = createCapture(VIDEO)

}

function draw()

{

 background(220)

}

noCanvas() We tell the setup() function we don’t
want a canvas

video = createCapture(VIDEO) We do want a video from the webcam

AI module A unit #9 of 5 69 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #9 of 6 69 www.elegantAI.org

Figure A9.1

http://www.elegantAI.org

To use the video image, we want it on the canvas. So replace noCanvas()
with createCanvas(640, 480) and hide the video in setup(). This
will place the video on the canvas.

🗒 Notes

You should have one video image exactly as before.

🌻 Challenges

1. Comment out // video.hide()

2. Change the size of the canvas to see that you have placed the video on

the canvas, hence the dimensions.

3. Change image(video, 0, 0) to image(video, 100, 100).

🛠 Code Explanation

Sketch A9.2 hiding the video

let video

function setup()

{

 createCanvas(640, 480)

 video = createCapture(VIDEO)

 video.hide()

}

function draw()

{

 background(220)

 image(video, 0, 0)

}

video.hide() Hides the video (but not the one drawn on the canvas)

image(video, 0, 0) This places the image, in this case a video at origin (0, 0)

AI module A unit #9 of 7 69 www.elegantAI.org

http://www.elegantAI.org

We want to flip the video so that it mirrors our movements; it makes it
much more intuitive when we come to train the model.

🗒 Notes

Now you have a mirrored image from the webcam.

🛠 Code Explanation

Sketch A9.3 mirrored

let video

function setup()

{

 createCanvas(640, 480)

 video = createCapture(VIDEO, {flipped: true})

 video.hide()

}

function draw()

{

 background(220)

 image(video, 0, 0)

}

{flipped: true} Flips the video so that it behaves like a mirror

AI module A unit #9 of 8 69 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #9 of 9 69 www.elegantAI.org

Figure A9.3 mirrored

http://www.elegantAI.org

Now we want to draw it on the canvas in pixels. However, we want to
double-check that the video is working before we do anything else. To do
that, we create a boolean variable called ready that is either true or
false. The default is false, and when the video is ready, we have a
callback function called videoReady() and set it to true. Then, in
draw(), we display the video image only when ready returns true.

Sketch A9.4 video ready

let video

let ready = false

function setup()

{

 createCanvas(640, 480)

 video = createCapture(VIDEO, {flipped: true}, videoReady)

 video.hide()

}

function videoReady()

{

 ready = true

}

function draw()

{

 background(220)

 if (ready)

 {

 image(video, 0, 0)

 }

}

AI module A unit #9 of 10 69 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Everything should work just as before. This is an important step before we
start adding data to the neural network.

🛠 Code Explanation

video = createCapture(VIDEO,
{flipped: true}, videoReady) The videoReady is the callback function

ready = true Returns boolean true when ready

if (ready) Check to see that the video is streaming
before displaying it

AI module A unit #9 of 11 69 www.elegantAI.org

http://www.elegantAI.org

At present, we have an image coming in at 640 x 480 pixels. You are
drawing that onto the canvas of the same dimensions (and ratio). If we
change the canvas to 400 x 400, we crop the image, losing some of it. We
want to use a square image, and then we can simplify the pixelation later.
First, let’s change the canvas size.

Sketch A9.5 the size of the video

let video

let ready = false

function setup()

{

 createCanvas(400, 400)

 video = createCapture(VIDEO, {flipped: true}, videoReady)

 video.hide()

}

function videoReady()

{

 ready = true

}

function draw()

{

 background(220)

 if (ready)

 {

 image(video, 0, 0)

 }

}

AI module A unit #9 of 12 69 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We only get part of the image from the camera. We want the full image,
even if it is distorted and squashed into a square.

AI module A unit #9 of 13 69 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #9 of 14 69 www.elegantAI.org

Figure A9.5

http://www.elegantAI.org

We can squash the video to a new size. This will distort the video, but isn’t
a problem for this exercise. In fact, we will be squashing it a whole lot
more. We create a variable called videoSize and use the function
video.size() to change the dimensions. We will set the dimensions to
400 for now.

Sketch A9.6 resizing the video

let video

let ready = false

let videoSize = 400

function setup()

{

 createCanvas(400, 400)

 video = createCapture(VIDEO, {flipped: true}, videoReady)

 video.hide()

 video.size(videoSize, videoSize)

}

function videoReady()

{

 ready = true

}

function draw()

{

 background(220)

 if (ready)

 {

 image(video, 0, 0)

 }

}

AI module A unit #9 of 15 69 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

The video is now fully 400 x 400, although it is much squashier. Using the
same dimensions for the width and height (videoSize) is just for
convenience. You could have different values. Using a variable means you
can alter and change it at any time.

🌻 Challenge

1. Try other dimensions

2. Try 640 x 480

🛠 Code Explanation

let videoSize = 400 Set the dimensions of the video

video.size(videoSize, videoSize) Specifies the dimensions of the video not
the canvas drawing it onto

AI module A unit #9 of 16 69 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #9 of 17 69 www.elegantAI.org

Figure A9.6

http://www.elegantAI.org

What we want to do is change the size to 10 x 10, yes, that small! This
means the software behind producing the video is going to try and create
a 10 x 10 video image from a 640 x 480 video image. We reduce the
videoSize to 10.

Sketch A9.7 even smaller

let video

let ready = false

let videoSize = 10

function setup()

{

 createCanvas(400, 400)

 video = createCapture(VIDEO, {flipped: true}, videoReady)

 video.hide()

 video.size(videoSize, videoSize)

}

function videoReady()

{

 ready = true

}

function draw()

{

 background(220)

 if (ready)

 {

 image(video, 0, 0)

 }

}

AI module A unit #9 of 18 69 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

The video is now really small, almost too small to see; it is now 10 pixels
by 10 pixels. The second figure, A9.7b, below shows what it does look like
close up. You will notice that it seems grainy and indistinct. This is because
it is trying to approximate the larger image.

🌻 Challenge

Try something a little bigger, say 50 pixels.

AI module A unit #9 of 19 69 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #9 of 20 69 www.elegantAI.org

Figure A9.7a can you see it?

http://www.elegantAI.org

AI module A unit #9 of 21 69 www.elegantAI.org

Figure A9.7b yes, it really is me!

http://www.elegantAI.org

We want to take those pixels which equate to 100 data points (10 by
10), except that there are four channels for each pixel: the red, green,
blue, and alpha (transparency), which means we actually have 400 data
points, even though we will ignore the alpha.

The function video.loadPixels() does just that; it loads the video into
a pixel array which we will access through a nested loop. Remove the
image(video, 0, 0) and replace it with the loadPixels(). A full
explanation of how we derive the nested loop for getting the values of the
pixels in an image is covered in the coding snippets unit. Check back
there if you are unsure.

Sketch A9.8 loading the pixels

let video

let ready = false

let videoSize = 10

function setup()

{

 createCanvas(400, 400)

 video = createCapture(VIDEO, {flipped: true}, videoReady)

 video.hide()

 video.size(videoSize, videoSize)

}

function videoReady()

{

 ready = true

}

function draw()

{

 background(220)

 if (ready)

AI module A unit #9 of 22 69 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

This means we have, currently, no video to display; you get a blank canvas.
The nested loop takes the r (red) value from the pixel, the g (green) value
from that pixel, and the b (blue) value of the pixel from the pixel array.
What we can now do is scale or magnify each pixel and colour in a square
with those pixel values. In short, each pixel has four elements of the pixel
in the array; that is why we multiply by four on each loop, the fourth
being the alpha value (which we will not bother to use).

🛠 Code Explanation

 {

 video.loadPixels()

 for (let x = 0; x < video.width; x++)

 {

 for (let y = 0; y < video.height; y++)

 {

 let index = (x + y * video.width) * 4

 let r = video.pixels[index + 0]

 let g = video.pixels[index + 1]

 let b = video.pixels[index + 2]

 }

 }

 }

}

video.loadPixels() Loads all the pixels (with four elements
per pixel) into an array

for (let x = 0; x < video.width;
x++) Goes through all 10 values of x

for (let y = 0; y <
video.height; y++)

For each value of x work through each 10
values of y

let index = (x + y *
video.width) * 4

Each index starting from the top left
hand corner, going across to the bottom
right hand corner

let r = video.pixels[index + 0] This is the index for the first element
(red) of the pixel colour

AI module A unit #9 of 23 69 www.elegantAI.org

http://www.elegantAI.org

let g = video.pixels[index + 1] This is the index for the second element
(green) of the pixel colour

let b = video.pixels[index + 2] This is the index for the third element
(blue) of the pixel colour

AI module A unit #9 of 24 69 www.elegantAI.org

http://www.elegantAI.org

We are going to draw 10 by 10 squares on the canvas. Each square will be
given the r, g, b values for the corresponding pixel in the 10 x 10 pixel
video image. If you remember, it was a bit grainy and blurry; we are
effectively going to scale up that tiny image to fill the canvas. The width
of the square (w) is simply the width of the canvas divided by the
videoSize. This means if you want to make changes to either of those
variables, they will calculate them rather than hard-coding the values.

Sketch A9.9 enlarged pixels

let video

let ready = false

let videoSize = 10

function setup()

{

 createCanvas(400, 400)

 video = createCapture(VIDEO, {flipped: true}, videoReady)

 video.hide()

 video.size(videoSize, videoSize)

}

function videoReady()

{

 ready = true

}

function draw()

{

 background(220)

 if (ready)

 {

 let w = width/videoSize

 video.loadPixels()

AI module A unit #9 of 25 69 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We now have a larger version of that tiny image of 10 x 10 pixels on a
canvas of 10 by 10 squares.

🛠 Code Explanation

 for (let x = 0; x < video.width; x++)

 {

 for (let y = 0; y < video.height; y++)

 {

 let index = (x + y * video.width) * 4

 let r = video.pixels[index + 0]

 let g = video.pixels[index + 1]

 let b = video.pixels[index + 2]

 noStroke()

 fill(r, g, b)

 square(x * w, y * w, w)

 }

 }

 }

}

square(x * w, y * w, w) Calculating the position and size of each square

AI module A unit #9 of 26 69 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #9 of 27 69 www.elegantAI.org

Figure A9.9 it really is me

http://www.elegantAI.org

Now we can add our neural network. The inputs are all the pixels
(totalPixels) in the image of videoSize (10), and each pixel has an
RGB value, hence videoSize x videoSize x 3. We have all the pixels
as the inputs, hence why we want a very small image. For the output, we
have one output (this will become clear later). This will include a learning
rate lower than the default. The task is regression because the output
will be a single value. We will also have the loss function charted.

Sketch A9.10 neural network

let nn

let video

let ready = false

let videoSize = 10

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 video = createCapture(VIDEO, {flipped: true}, videoReady)

 video.hide()

 video.size(videoSize, videoSize)

 let totalPixels = videoSize * videoSize * 3

 const options = {

 inputs: totalPixels,

 outputs: 1,

 learningRate: 0.01,

 task: 'regression',

 debug: true

 }

 nn = ml5.neuralNetwork(options)

}

function videoReady()

AI module A unit #9 of 28 69 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

The effect hasn’t changed, but we have the main elements in place to run
this example.

{

 ready = true

}

function draw()

{

 background(220)

 if (ready)

 {

 let w = width/videoSize

 video.loadPixels()

 for (let x = 0; x < video.width; x++)

 {

 for (let y = 0; y < video.height; y++)

 {

 let index = (x + y * video.width) * 4

 let r = video.pixels[index + 0]

 let g = video.pixels[index + 1]

 let b = video.pixels[index + 2]

 noStroke()

 fill(r, g, b)

 square(x * w, y * w, w)

 }

 }

 }

}

AI module A unit #9 of 29 69 www.elegantAI.org

http://www.elegantAI.org

We want to create a circle which we can control by moving our head from
side to side or left hand to right hand. We will have the position of your
head (or hand) as the input pixels and the position of the circle as the
output. We use a slider to position our circle as we train it. We move the
circle to the left and move our head to the left and then save the data/
image pixels (several times), repeat by moving the circle to the right and
our head to the right (read left hand right hand). Again, repeat saving
several examples.

Sketch A9.11 adding the slider output

let nn

let video

let ready = false

let videoSize = 10

let sliderPos = 0

let slider

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 slider = createSlider(0, width, 0)

 video = createCapture(VIDEO, {flipped: true}, videoReady)

 video.hide()

 video.size(videoSize, videoSize)

 let totalPixels = videoSize * videoSize * 3

 const options = {

 inputs: totalPixels,

 outputs: 1,

 learningRate: 0.01,

 task: 'regression',

 debug: true

 }

AI module A unit #9 of 30 69 www.elegantAI.org

http://www.elegantAI.org

 nn = ml5.neuralNetwork(options)

}

function videoReady()

{

 ready = true

}

function draw()

{

 background(220)

 if (ready)

 {

 let w = width/videoSize

 video.loadPixels()

 for (let x = 0; x < video.width; x++)

 {

 for (let y = 0; y < video.height; y++)

 {

 let index = (x + y * video.width) * 4

 let r = video.pixels[index + 0]

 let g = video.pixels[index + 1]

 let b = video.pixels[index + 2]

 noStroke()

 fill(r, g, b)

 square(x * w, y * w, w)

 }

 }

 sliderPos = slider.value()

 fill(0, 0, 255)

 circle(sliderPos, height/2, 50)

 }

}

AI module A unit #9 of 31 69 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We draw the circle on the canvas; we also initialise it to zero, which is the
left-hand side, obviously. Note we are only moving the blue circle along the
x-axis; the y-value is fixed, hence one value is output.

🛠 Code Explanation

let sliderPos = 0 The position of the slider

let slider Naming the slider

slider = createSlider(0, width, 0) Creating the slider

sliderPos = slider.value() Gives you the value of the slider
position

AI module A unit #9 of 32 69 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #9 of 33 69 www.elegantAI.org

Figure A9.11a: slider to the left

http://www.elegantAI.org

AI module A unit #9 of 34 69 www.elegantAI.org

Figure A9.11b: slider to the right

http://www.elegantAI.org

We need a button so we can add the examples.

Sketch A9.12 adding the buttons

let nn

let video

let ready = false

let videoSize = 10

let sliderPos = 0

let slider

let buttonAddExample

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 slider = createSlider(0, width, 0)

 buttonAddExample = createButton('add example')

 buttonAddExample.style('font-size', '20px')

 video = createCapture(VIDEO, {flipped: true}, videoReady)

 video.hide()

 video.size(videoSize, videoSize)

 let totalPixels = videoSize * videoSize * 3

 const options = {

 inputs: totalPixels,

 outputs: 1,

 learningRate: 0.01,

 task: 'regression',

 debug: true

 }

 nn = ml5.neuralNetwork(options)

}

AI module A unit #9 of 35 69 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

No action from the button yet.

function videoReady()

{

 ready = true

}

function draw()

{

 background(220)

 if (ready)

 {

 let w = width/videoSize

 video.loadPixels()

 for (let x = 0; x < video.width; x++)

 {

 for (let y = 0; y < video.height; y++)

 {

 let index = (x + y * video.width) * 4

 let r = video.pixels[index + 0]

 let g = video.pixels[index + 1]

 let b = video.pixels[index + 2]

 noStroke()

 fill(r, g, b)

 square(x * w, y * w, w)

 }

 }

 sliderPos = slider.value()

 fill(0, 0, 255)

 circle(sliderPos, height/2, 50)

 }

}

AI module A unit #9 of 36 69 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #9 of 37 69 www.elegantAI.org

Figure A9.12

http://www.elegantAI.org

While we are in the business of adding buttons, we will create a training
button to use later.

Sketch A9.13 the training button

let nn

let video

let ready = false

let videoSize = 10

let sliderPos = 0

let slider

let buttonAddExample

let buttonTrain

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 slider = createSlider(0, width, 0)

 buttonAddExample = createButton('add example')

 buttonAddExample.style('font-size', '20px')

 buttonTrain = createButton('train')

 buttonTrain.style('font-size', '20px')

 video = createCapture(VIDEO, {flipped: true}, videoReady)

 video.hide()

 video.size(videoSize, videoSize)

 let totalPixels = videoSize * videoSize * 3

 const options = {

 inputs: totalPixels,

 outputs: 1,

 learningRate: 0.01,

 task: 'regression',

 debug: true

AI module A unit #9 of 38 69 www.elegantAI.org

http://www.elegantAI.org

 }

 nn = ml5.neuralNetwork(options)

}

function videoReady()

{

 ready = true

}

function draw()

{

 background(220)

 if (ready)

 {

 let w = width/videoSize

 video.loadPixels()

 for (let x = 0; x < video.width; x++)

 {

 for (let y = 0; y < video.height; y++)

 {

 let index = (x + y * video.width) * 4

 let r = video.pixels[index + 0]

 let g = video.pixels[index + 1]

 let b = video.pixels[index + 2]

 noStroke()

 fill(r, g, b)

 square(x * w, y * w, w)

 }

 }

 sliderPos = slider.value()

 fill(0, 0, 255)

 circle(sliderPos, height/2, 50)

 }

AI module A unit #9 of 39 69 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Now we have the two buttons and a slider.

}

AI module A unit #9 of 40 69 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #9 of 41 69 www.elegantAI.org

Figure A9.13

http://www.elegantAI.org

Now we have the two buttons and a slider, we can do something with
them. The aim is to put the slider to zero, move our head to the left (or
left hand), and effectively take several snapshots (adding about five
examples each), moving the slider to the other edge of the canvas, and
repeat with our head in that position (or right hand). So we end up with
ten (or however many) datasets. We will do this in stages; the first stage is
to get those inputs by creating a function called getInputs().

We are going to load the pixels; remember, it is taking the tiny (10 x 10)
video. We need an empty array to store these inputs. There are three
values for each pixel: the red (r), green (g), and blue (b) values, which are
index + 0, index + 1, and index + 2, respectively, for each pixel.

Sketch A9.14 getting the inputs

let nn

let video

let ready = false

let videoSize = 10

let sliderPos = 0

let slider

let buttonAddExample

let buttonTrain

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 slider = createSlider(0, width, 0)

 buttonAddExample = createButton('add example')

 buttonAddExample.style('font-size', '20px')

 buttonTrain = createButton('train')

 buttonTrain.style('font-size', '20px')

 video = createCapture(VIDEO, {flipped: true}, videoReady)

 video.hide()

AI module A unit #9 of 42 69 www.elegantAI.org

http://www.elegantAI.org

 video.size(videoSize, videoSize)

 let totalPixels = videoSize * videoSize * 3

 const options = {

 inputs: totalPixels,

 outputs: 1,

 learningRate: 0.01,

 task: 'regression',

 debug: true

 }

 nn = ml5.neuralNetwork(options)

}

function videoReady()

{

 ready = true

}

function draw()

{

 background(220)

 if (ready)

 {

 let w = width/videoSize

 video.loadPixels()

 for (let x = 0; x < video.width; x++)

 {

 for (let y = 0; y < video.height; y++)

 {

 let index = (x + y * video.width) * 4

 let r = video.pixels[index + 0]

 let g = video.pixels[index + 1]

 let b = video.pixels[index + 2]

 noStroke()

AI module A unit #9 of 43 69 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Quite a few lines of code which look very similar to the draw() function.
We are using the pixels from the tiny video, hence video.pixels[]
rather than just pixels[].

🛠 Code Explanation

 fill(r, g, b)

 square(x * w, y * w, w)

 }

 }

 sliderPos = slider.value()

 fill(0, 0, 255)

 circle(sliderPos, height/2, 50)

 }

}

function getInputs()

{

 video.loadPixels()

 let inputs = []

 for (let i = 0; i < video.width * video.height; i++)

 {

 let index = i * 4

 inputs.push(video.pixels[index + 0])

 inputs.push(video.pixels[index + 1])

 inputs.push(video.pixels[index + 2])

 }

 return inputs

}

let inputs = [] This is the inputs array

for (let i = 0; i < video.width *
video.height; i++)

The video.width times the
video.height gives us all the pixels

AI module A unit #9 of 44 69 www.elegantAI.org

http://www.elegantAI.org

let index = i * 4
We jump every four elements in
the pixel array to get the next
pixel

inputs.push(video.pixels[index + 0]) The red value is pushed into the
inputs array

inputs.push(video.pixels[index + 1]) The green value is pushed into the
inputs array

inputs.push(video.pixels[index + 2]) The blue value is pushed into the
inputs array

return inputs Returns the complete array

AI module A unit #9 of 45 69 www.elegantAI.org

http://www.elegantAI.org

We want to add the data to the neural network. We want the inputs for
the position of the slider. We create another variable called pos, which
returns the value of the slider. We want to add it every time we click on
the add example button with the mouse.

Sketch A9.15 adding an example

let nn

let video

let ready = false

let videoSize = 10

let sliderPos = 0

let slider

let buttonAddExample

let buttonTrain

let pos = 0

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 slider = createSlider(0, width, 0)

 buttonAddExample = createButton('add example')

 buttonAddExample.style('font-size', '20px')

 buttonTrain = createButton('train')

 buttonTrain.style('font-size', '20px')

 video = createCapture(VIDEO, {flipped: true}, videoReady)

 video.hide()

 video.size(videoSize, videoSize)

 let totalPixels = videoSize * videoSize * 3

 const options = {

 inputs: totalPixels,

 outputs: 1,

AI module A unit #9 of 46 69 www.elegantAI.org

http://www.elegantAI.org

 learningRate: 0.01,

 task: 'regression',

 debug: true

 }

 nn = ml5.neuralNetwork(options)

}

function videoReady()

{

 ready = true

}

function draw()

{

 background(220)

 buttonAddExample.mousePressed(addExample)

 if (ready)

 {

 let w = width/videoSize

 video.loadPixels()

 for (let x = 0; x < video.width; x++)

 {

 for (let y = 0; y < video.height; y++)

 {

 let index = (x + y * video.width) * 4

 let r = video.pixels[index + 0]

 let g = video.pixels[index + 1]

 let b = video.pixels[index + 2]

 noStroke()

 fill(r, g, b)

 square(x * w, y * w, w)

 }

 }

AI module A unit #9 of 47 69 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We add the pixel data combined with the slider position for each example.

 sliderPos = slider.value()

 fill(0, 0, 255)

 circle(sliderPos, height/2, 50)

 }

}

function getInputs()

{

 video.loadPixels()

 let inputs = []

 for (let i = 0; i < video.width * video.height; i++)

 {

 let index = i * 4

 inputs.push(video.pixels[index + 0])

 inputs.push(video.pixels[index + 1])

 inputs.push(video.pixels[index + 2])

 }

 return inputs

}

function addExample()

{

 pos = slider.value()

 let inputs = getInputs()

 nn.addData(inputs, [pos])

}

AI module A unit #9 of 48 69 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

let pos = 0 We need a new variable otherwise we end up

with two sets of data from the slider position

buttonAddExample.mousePressed
(addExample) We call the addExample function

pos = slider.value() The pos variable gets the slider position

let inputs = getInputs() We bring the pixel dataset

nn.addData(inputs, [pos]) Adding the data, the inputs (pixels) and the
output (pos as an array)

AI module A unit #9 of 49 69 www.elegantAI.org

http://www.elegantAI.org

We have now collected the training data examples, and we want to train
the model on that data. So, we create another function called
trainModel(). This normalises the data and then trains on it. We will
train it for 50 epochs.

❗ If you run it now, you will get an error.

Sketch A9.16 training the model

let nn

let video

let ready = false

let videoSize = 10

let sliderPos = 0

let slider

let buttonAddExample

let buttonTrain

let pos = 0

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 slider = createSlider(0, width, 0)

 buttonAddExample = createButton('add example')

 buttonAddExample.style('font-size', '20px')

 buttonTrain = createButton('train')

 buttonTrain.style('font-size', '20px')

 video = createCapture(VIDEO, {flipped: true}, videoReady)

 video.hide()

 video.size(videoSize, videoSize)

 let totalPixels = videoSize * videoSize * 3

 const options = {

 inputs: totalPixels,

AI module A unit #9 of 50 69 www.elegantAI.org

http://www.elegantAI.org

 outputs: 1,

 learningRate: 0.01,

 task: 'regression',

 debug: true

 }

 nn = ml5.neuralNetwork(options)

}

function videoReady()

{

 ready = true

}

function draw()

{

 background(220)

 buttonAddExample.mousePressed(addExample)

 if (ready)

 {

 let w = width/videoSize

 video.loadPixels()

 for (let x = 0; x < video.width; x++)

 {

 for (let y = 0; y < video.height; y++)

 {

 let index = (x + y * video.width) * 4

 let r = video.pixels[index + 0]

 let g = video.pixels[index + 1]

 let b = video.pixels[index + 2]

 noStroke()

 fill(r, g, b)

 square(x * w, y * w, w)

 }

AI module A unit #9 of 51 69 www.elegantAI.org

http://www.elegantAI.org

 }

 sliderPos = slider.value()

 fill(0, 0, 255)

 circle(sliderPos, height/2, 50)

 }

}

function getInputs()

{

 video.loadPixels()

 let inputs = []

 for (let i = 0; i < video.width * video.height; i++)

 {

 let index = i * 4

 inputs.push(video.pixels[index + 0] / 255)

 inputs.push(video.pixels[index + 1] / 255)

 inputs.push(video.pixels[index + 2] / 255)

 }

 return inputs

}

function addExample()

{

 pos = slider.value()

 let inputs = getInputs()

 nn.addData(inputs, [pos])

 buttonTrain.mousePressed(trainModel)

}

function trainModel()

{

 nn.normalizeData()

 nn.train(finishedTraining)

AI module A unit #9 of 52 69 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

In the train() function, we have a callback function for when the
training is finished, called finishedTraining. We don’t have the
finishedTraining() function so you will get an error.

🛠 Code Explanation

}

buttonTrain.mousePressed(trainModel)
When the button to train has been
pressed it calls the trainModel
function

nn.normalizeData() Data is then normalised

nn.train(finishedTraining) Trained over 50 epochs and then
the callback

AI module A unit #9 of 53 69 www.elegantAI.org

http://www.elegantAI.org

When we have finished training the model, we want to predict the result.
To do that, we have a function and call it predict().

❗ If you run it now, you will still get an error.

Sketch A9.17 finished training

let nn

let video

let ready = false

let videoSize = 10

let sliderPos = 0

let slider

let buttonAddExample

let buttonTrain

let pos = 0

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 slider = createSlider(0, width, 0)

 buttonAddExample = createButton('add example')

 buttonAddExample.style('font-size', '20px')

 buttonTrain = createButton('train')

 buttonTrain.style('font-size', '20px')

 video = createCapture(VIDEO, {flipped: true}, videoReady)

 video.hide()

 video.size(videoSize, videoSize)

 let totalPixels = videoSize * videoSize * 3

 const options = {

 inputs: totalPixels,

 outputs: 1,

 learningRate: 0.01,

AI module A unit #9 of 54 69 www.elegantAI.org

http://www.elegantAI.org

 task: 'regression',

 debug: true

 }

 nn = ml5.neuralNetwork(options)

}

function videoReady()

{

 ready = true

}

function draw()

{

 background(220)

 buttonAddExample.mousePressed(addExample)

 if (ready)

 {

 let w = width/videoSize

 video.loadPixels()

 for (let x = 0; x < video.width; x++)

 {

 for (let y = 0; y < video.height; y++)

 {

 let index = (x + y * video.width) * 4

 let r = video.pixels[index + 0]

 let g = video.pixels[index + 1]

 let b = video.pixels[index + 2]

 noStroke()

 fill(r, g, b)

 square(x * w, y * w, w)

 }

 }

 sliderPos = slider.value()

AI module A unit #9 of 55 69 www.elegantAI.org

http://www.elegantAI.org

 fill(0, 0, 255)

 circle(sliderPos, height/2, 50)

 }

}

function getInputs()

{

 video.loadPixels()

 let inputs = []

 for (let i = 0; i < video.width * video.height; i++)

 {

 let index = i * 4

 inputs.push(video.pixels[index + 0] / 255)

 inputs.push(video.pixels[index + 1] / 255)

 inputs.push(video.pixels[index + 2] / 255)

 }

 return inputs

}

function addExample()

{

 pos = slider.value()

 let inputs = getInputs()

 nn.addData(inputs, [pos])

 buttonTrain.mousePressed(trainModel)

}

function trainModel()

{

 nn.normalizeData()

 nn.train(finishedTraining)

}

AI module A unit #9 of 56 69 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Finished training, which means we are now ready to predict. No
predict() function hence the error.

function finishedTraining()

{

 predict()

}

AI module A unit #9 of 57 69 www.elegantAI.org

http://www.elegantAI.org

Now we need to predict the result after training. We use the pixels from
the video, so that when we move our heads from left to right (left or right
hand), it can predict the position of the circle based on our trained model.
Here we create the predict() function.

❗ If you run it, you will still get an error.

Sketch A9.18 predicting the movement

let nn

let video

let ready = false

let videoSize = 10

let sliderPos = 0

let slider

let buttonAddExample

let buttonTrain

let pos = 0

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 slider = createSlider(0, width, 0)

 buttonAddExample = createButton('add example')

 buttonAddExample.style('font-size', '20px')

 buttonTrain = createButton('train')

 buttonTrain.style('font-size', '20px')

 video = createCapture(VIDEO, {flipped: true}, videoReady)

 video.hide()

 video.size(videoSize, videoSize)

 let totalPixels = videoSize * videoSize * 3

 const options = {

 inputs: totalPixels,

AI module A unit #9 of 58 69 www.elegantAI.org

http://www.elegantAI.org

 outputs: 1,

 learningRate: 0.01,

 task: 'regression',

 debug: true

 }

 nn = ml5.neuralNetwork(options)

}

function videoReady()

{

 ready = true

}

function draw()

{

 background(220)

 buttonAddExample.mousePressed(addExample)

 if (ready)

 {

 let w = width/videoSize

 video.loadPixels()

 for (let x = 0; x < video.width; x++)

 {

 for (let y = 0; y < video.height; y++)

 {

 let index = (x + y * video.width) * 4

 let r = video.pixels[index + 0]

 let g = video.pixels[index + 1]

 let b = video.pixels[index + 2]

 noStroke()

 fill(r, g, b)

 square(x * w, y * w, w)

 }

AI module A unit #9 of 59 69 www.elegantAI.org

http://www.elegantAI.org

 }

 sliderPos = slider.value()

 fill(0, 0, 255)

 circle(sliderPos, height/2, 50)

 }

}

function getInputs()

{

 video.loadPixels()

 let inputs = []

 for (let i = 0; i < video.width * video.height; i++)

 {

 let index = i * 4

 inputs.push(video.pixels[index + 0] / 255)

 inputs.push(video.pixels[index + 1] / 255)

 inputs.push(video.pixels[index + 2] / 255)

 }

 return inputs

}

function addExample()

{

 pos = slider.value()

 let inputs = getInputs()

 nn.addData(inputs, [pos])

 buttonTrain.mousePressed(trainModel)

}

function trainModel()

{

 nn.normalizeData()

 nn.train(finishedTraining)

AI module A unit #9 of 60 69 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

In the predict() function, we collect our head (or hand) movement and
feed it into the neural network, and have a callback for the results called
gotPosition. An error because of the lack of gotPosition() function.

🛠 Code Explanation

}

function finishedTraining()

{

 predict()

}

function predict()

{

 let inputs = getInputs()

 nn.predict(inputs, gotPosition)

}

let inputs = getInputs() The pixels are imputed from the video

nn.predict(inputs, gotPosition) The callback receives the result (output)

AI module A unit #9 of 61 69 www.elegantAI.org

http://www.elegantAI.org

When we have a prediction, we then need to draw a different circle (in
red). We don’t want to draw anything while we are getting data or training;
hence, the boolean predictReady is set to false until we have done
the prediction. In the draw() function, we need to remove the blue circle
(used for training) and replace it with the red circle (for prediction)
instead. We set predictReady to be true, get the result, and send the
red circle to the predicted position (pos). We predict again because we
want to see the red circle move when we move our head (or hand) from
left to right. The circle should respond to the changes.

Sketch A9.19 predict ready

let nn

let video

let ready = false

let videoSize = 10

let sliderPos = 0

let slider

let buttonAddExample

let buttonTrain

let pos = 0

let predictReady = false

function setup()

{

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 slider = createSlider(0, width, 0)

 buttonAddExample = createButton('add example')

 buttonAddExample.style('font-size', '20px')

 buttonTrain = createButton('train')

 buttonTrain.style('font-size', '20px')

 video = createCapture(VIDEO, {flipped: true}, videoReady)

 video.hide()

AI module A unit #9 of 62 69 www.elegantAI.org

http://www.elegantAI.org

 video.size(videoSize, videoSize)

 let totalPixels = videoSize * videoSize * 3

 const options = {

 inputs: totalPixels,

 outputs: 1,

 learningRate: 0.01,

 task: 'regression',

 debug: true

 }

 nn = ml5.neuralNetwork(options)

}

function videoReady()

{

 ready = true

}

function draw()

{

 background(220)

 buttonAddExample.mousePressed(addExample)

 if (ready)

 {

 let w = width/videoSize

 video.loadPixels()

 for (let x = 0; x < video.width; x++)

 {

 for (let y = 0; y < video.height; y++)

 {

 let index = (x + y * video.width) * 4

 let r = video.pixels[index + 0]

 let g = video.pixels[index + 1]

 let b = video.pixels[index + 2]

AI module A unit #9 of 63 69 www.elegantAI.org

http://www.elegantAI.org

 noStroke()

 fill(r, g, b)

 square(x * w, y * w, w)

 }

 }

 if (predictReady == true)

 {

 fill(255, 0, 0)

 circle(pos, height/2, 50)

 }

 else

 {

 sliderPos = slider.value()

 fill(0, 0, 255)

 circle(sliderPos, height/2, 50)

 }

 }

}

function getInputs()

{

 video.loadPixels()

 let inputs = []

 for (let i = 0; i < video.width * video.height; i++)

 {

 let index = i * 4

 inputs.push(video.pixels[index + 0])

 inputs.push(video.pixels[index + 1])

 inputs.push(video.pixels[index + 2])

 }

 return inputs

}

AI module A unit #9 of 64 69 www.elegantAI.org

http://www.elegantAI.org

function addExample()

{

 pos = slider.value()

 let inputs = getInputs()

 nn.addData(inputs, [pos])

 buttonTrain.mousePressed(trainModel)

}

function trainModel()

{

 nn.normalizeData()

 nn.train(finishedTraining)

}

function finishedTraining()

{

 predict()

}

function predict()

{

 let inputs = getInputs()

 nn.predict(inputs, gotPosition)

}

function gotPosition(results)

{

 predictReady = true

 pos = (results[0].value)

 predict()

}

AI module A unit #9 of 65 69 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We introduce the if()...else so we only draw the red circle when we
are ready and not before; otherwise, we draw the blue.

🌻 Challenges

1. Make the video size smaller (smaller pixels = more of them).

2. Add other hyperparameters.

3. Make other things happen in response to your training.

🛠 Code Explanation

let predictReady = false Initialise the predictReady as false

function gotPosition(results) Argument is the result

predictReady = true Boolean true

pos = (results[0].value) Get the current result from the output (pos)
array

predict() Repeat

if (predictReady == true)
If the boolean is true then draw the red
circle at the predicted position otherwise
(else) continue to draw the blue circle

AI module A unit #9 of 66 69 www.elegantAI.org

http://www.elegantAI.org

AI module A unit #9 of 67 69 www.elegantAI.org

Figure A9.19a: loss chart

http://www.elegantAI.org

AI module A unit #9 of 68 69 www.elegantAI.org

Figure A9.19b: to the left

http://www.elegantAI.org

AI module A unit #9 of 69 69 www.elegantAI.org

Figure A9.19c: to the right

http://www.elegantAI.org

