
Artificial
Intelligence

Module B

Unit #4

pre-trained

bodyPose

Module B Unit #4 bodyPose with ml5.js

Introduction to bodyPose

The index.html file

Sketch B4.1 let us begin

Sketch B4.2 preload

Sketch B4.3 get the results

Sketch B4.4 keypoints

Sketch B4.5 confidence

Sketch B4.6 skeleton

Content

AI module B unit #4 of 2 18 www.elegantAI.org

http://www.elegantAI.org

This is another pre-trained model to use. It picks out the main body
points, wrist, knee, elbow, eyes, and so on. You can draw them and watch
them move with you; you can also connect them as a skeleton.

One of the uses of this is to analyse movement, especially in sport where
you can compare the running action of one runner versus another to
identify differences, or in football, golf, or tennis where there may be
tweaks that can be made to improve performance.

By default, the bodyPose model uses the MoveNet version; this has 17
body keypoints, as shown in the diagram below. If you don’t specify the
version, it defaults to MoveNet. The alternative is BlazePose, which has
33 body keypoints and also has a 3D option (x, y, z). We will use the
MoveNet for this unit.

Introduction to pre-trained bodyPose with ml5.js

AI module B unit #4 of 3 18 www.elegantAI.org

Figure 1 BodyPose(‘moveNet’) Figure 2 BodyPose(‘blazePose’)

http://www.elegantAI.org

Adding the line of code for ml5.js

The index.html file

<!DOCTYPE html>

<html lang="en">

 <head>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.11.1/p5.js"></script>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.11.1/addons/p5.sound.min.js"></script>

 <script src="https://unpkg.com/ml5@1/dist/ml5.min.js"></
script>

 <link rel="stylesheet" type="text/css" href="style.css">

 <meta charset="utf-8" />

 </head>

 <body>

 <main>

 </main>

 <script src="sketch.js"></script>

 </body>

</html>

AI module B unit #4 of 4 18 www.elegantAI.org

http://www.elegantAI.org

You should be pretty familiar with this now. We start with our webcam
video stream, as we have done in the previous units.

🗒 Notes

You should have an image on your screen where the canvas should be. The
canvas will be 640 x 480. You can adjust the separating line between the
code and the canvas by dragging it.

Sketch B4.1 let us begin

let video

function setup()

{

 createCanvas(640, 480)

 video = createCapture(VIDEO, {flipped: true})

 video.size(640, 480)

 video.hide()

}

function draw()

{

 background(220)

 image(video, 0, 0, width, height)

}

AI module B unit #4 of 5 18 www.elegantAI.org

http://www.elegantAI.org

We want to preload the pre-trained model so that it is running before we
attempt to do anything with it; otherwise, if there is a slight lag, you will
get error messages because it cannot find it. We flipped the bodyPose
model as well as the video.

🗒 Notes

Nothing new, just missing a few steps we have covered already. Still won’t
see anything (except yourself) yet.

Sketch B4.2 preload

let video

let bodyPose

async function setup()

{

 ml5.setBackend("webgl")

 bodyPose = await ml5.bodyPose({flipped: true})

 createCanvas(640, 480)

 video = createCapture(VIDEO, {flipped: true})

 video.size(640, 480)

 video.hide()

}

function draw()

{

 background(220)

 image(video, 0, 0, width, height)

}

AI module B unit #4 of 6 18 www.elegantAI.org

http://www.elegantAI.org

We want the results of the bodyPose. We will console log the results into
the poses[] array.

Sketch B4.3 get the results

let video

let bodyPose

let poses = []

async function setup()

{

 ml5.setBackend("webgl")

 bodyPose = await ml5.bodyPose({flipped: true})

 createCanvas(640, 480)

 video = createCapture(VIDEO, {flipped: true})

 video.size(640, 480)

 video.hide()

 bodyPose.detectStart(video, gotPoses)

}

function draw()

{

 background(220)

 image(video, 0, 0, width, height)

}

function gotPoses(results)

{

 poses = results

 console.log(poses)

}

AI module B unit #4 of 7 18 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

You can see the results in the console (just stop the code running and
open up the arrays). They are called keypoints, which is important. They
contain an (x, y) co-ordinates, a description (name:), and a confidence
score. We can use these values to draw them on the canvas.

AI module B unit #4 of 8 18 www.elegantAI.org

http://www.elegantAI.org

AI module B unit #4 of 9 18 www.elegantAI.org

Figure B4.3

http://www.elegantAI.org

Let’s draw these keypoints on the canvas. We have all the results in the
poses[] array. We are going to loop through them and pull out the co-
ordinates of all the keypoints.

❗ Remove the console log

Sketch B4.4 keypoints

let video

let bodyPose

let poses = []

async function setup()

{

 ml5.setBackend("webgl")

 bodyPose = await ml5.bodyPose({flipped: true})

 createCanvas(640, 480)

 video = createCapture(VIDEO, {flipped: true})

 video.size(640, 480)

 video.hide()

 bodyPose.detectStart(video, gotPoses)

}

function draw()

{

 background(220)

 image(video, 0, 0, width, height)

 for (let i = 0; i < poses.length; i++)

 {

 let pose = poses[i]

 for (let j = 0; j < pose.keypoints.length; j++)

 {

 let keypoint = pose.keypoints[j]

 fill(255, 0, 0)

AI module B unit #4 of 10 18 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

In the console log, you can see the number of keypoints.

 circle(keypoint.x, keypoint.y, 10)

 }

 }

}

function gotPoses(results)

{

 poses = results

 // console.log(poses)

}

AI module B unit #4 of 11 18 www.elegantAI.org

http://www.elegantAI.org

AI module B unit #4 of 12 18 www.elegantAI.org

Figure B4.4

http://www.elegantAI.org

We draw all the points, whether you can see the parts of the body or not.
We can add a conditional statement to only draw the point if the
confidence score is above 0.1.

Sketch B4.5 confidence

let video

let bodyPose

let poses = []

async function setup()

{

 ml5.setBackend("webgl")

 bodyPose = await ml5.bodyPose({flipped: true})

 createCanvas(640, 480)

 video = createCapture(VIDEO, {flipped: true})

 video.size(640, 480)

 video.hide()

 bodyPose.detectStart(video, gotPoses)

}

function draw()

{

 background(220)

 image(video, 0, 0, width, height)

 for (let i = 0; i < poses.length; i++)

 {

 let pose = poses[i]

 for (let j = 0; j < pose.keypoints.length; j++)

 {

 let keypoint = pose.keypoints[j]

 if (keypoint.confidence > 0.1)

 {

AI module B unit #4 of 13 18 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Now you should only get ones that are relevant to what you can see.

🌻 Challenge

Change the confidence score.

🛠 Code Explanation

 fill(255, 0, 0)

 circle(keypoint.x, keypoint.y, 10)

 }

 }

 }

}

function gotPoses(results)

{

 poses = results

 // console.log(poses)

}

if (keypoint.confidence > 0.1)
Another attribute found in the array,
here we check to see if the key point
confidence is above 0.1 for each keypoint

AI module B unit #4 of 14 18 www.elegantAI.org

http://www.elegantAI.org

Let’s draw the skeleton by drawing a line between points. Notice that we
aren’t just joining all the points, only the relevant ones, using the
getSkeleton() function as part of the bodyPose model. There is a lot
of code to get your head around and would take a lot of explaining. Just
understand that every point has a corresponding point, and the inner
nested loop (containing the j variable) goes through all of them. I suggest
console logging to see what is happening.

Sketch B4.6 skeleton

let video

let bodyPose

let poses = []

let connections

async function setup()

{

 ml5.setBackend("webgl")

 bodyPose = await ml5.bodyPose({flipped: true})

 createCanvas(640, 480)

 video = createCapture(VIDEO, {flipped: true})

 video.size(640, 480)

 video.hide()

 bodyPose.detectStart(video, gotPoses)

 connections = bodyPose.getSkeleton()

}

function draw()

{

 background(220)

 image(video, 0, 0, width, height)

 for (let i = 0; i < poses.length; i++)

 {

 let pose = poses[i]

AI module B unit #4 of 15 18 www.elegantAI.org

http://www.elegantAI.org

 for (let j = 0; j < pose.keypoints.length; j++)

 {

 let keypoint = pose.keypoints[j]

 // if (keypoint.confidence > 0.1)

 // {

 // fill(255, 0, 0)

 // circle(keypoint.x, keypoint.y, 10)

 // }

 }

 }

 for (let i = 0; i < poses.length; i++)

 {

 let pose = poses[i]

 for (let j = 0; j < connections.length; j++)

 {

 let pointAIndex = connections[j][0]

 let pointBIndex = connections[j][1]

 let pointA = pose.keypoints[pointAIndex]

 let pointB = pose.keypoints[pointBIndex]

 if (pointA.confidence > 0.1 && pointB.confidence > 0.1)

 {

 stroke(255)

 strokeWeight(3)

 line(pointA.x, pointA.y, pointB.x, pointB.y)

 }

 }

 }

}

function gotPoses(results)

{

 poses = results

}

AI module B unit #4 of 16 18 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

You should have the white lines joining most of the red circles. There are a
lot of longer-named variables, which makes it difficult to read, but take
your time to try to understand; otherwise, just know how to use it.

🌻 Challenge

As I said earlier, to really start to understand the logic behind the nested
loop, I recommend using the console log to explore.

🛠 Code Explanation

connections =
bodyPose.getSkeleton()

The connections hold the skeleton connection points,
this is so that they are joined together in a logical
way rather than all of them joining each other.

AI module B unit #4 of 17 18 www.elegantAI.org

http://www.elegantAI.org

AI module B unit #4 of 18 18 www.elegantAI.org

Figure B4.6

http://www.elegantAI.org

