
Artificial
Intelligence

Module C

Unit #3

smart cars

Module C Unit #3 smart cars

Introduction to Unit #3 smart cars

The index.html file

Adding target.js and vehicle.js files

Adding them to the index.html file

Sketch C3.1 starting sketch

Sketch C3.2 target circle

Sketch C3.3 target class

Sketch C3.4 perlin noise

Sketch C3.5 moving target

Sketch C3.6 a vehicle

Sketch C3.7 random position

Sketch C3.8 moving towards the target

Sketch C3.9 the seek function

Sketch C3.10 seek and ye shall find

Sketch C3.11 more vehicles

A neuroevolution brain

Sketch C3.12 give the vehicle has a brain

Sketch C3.13 steering the vehicles

Sketch C3.14 the outputs

Sketch C3.15 they move

Sketch C3.16 fitness scores

Sketch C3.17 we ned a radius

Sketch C3.18 overlap

Weighted selection

Sketch C3.19 lifespan

Reproduction

Sketch C3.20 the next generation

Sketch C3.21 birth of a child

Sketch C3.22 lifeCounter

What next?

Sketch C3.23 adding a slider

Content

AI module C unit #3 of 2 72 www.elegantAI.org

http://www.elegantAI.org

We are going to give these cars a smart brain (ml5.js). They have to learn
to chase after a moving target. All they do is get a reward according to
how well they do. This uses a Genetic Algorithm to select those who
perform best. We aren’t going to train the algorithm but select the ones
that perform better, as every car will have its own neural network based
on random weights.

Over time, we select the best ones (that get closest to the target) and
breed them, thinking of natural selection, evolution. After many populations
have come and gone, we are left with ones that have succeeded in
breeding the right attributes (weights) to follow a moving target.

We are going to create two classes, target and vehicle. For these, we put
them in two new files and add them to the index.html file. This was
covered in the coding snippets part 4, so you will be familiar with
the process of adding files and the purposes of classes. However, I will
still emphasise their purpose and function so that you become more
familiar with them.

It goes without saying that you will also need to have the line of code for
ml5.js in the index.html file. You will also note that we will be switching
from one file to another and back again. This means that you might want
to keep the side panel open as you code. This way, you can switch quickly
from one to the other.

If you don’t want the fuss of going from file to file, then you can add the
classes in the sketch.js file and just have one long line of code.

Introduction to smart cars neuroevolution

AI module C unit #3 of 3 72 www.elegantAI.org

http://www.elegantAI.org

Adding ml5.js as per usual. If you still have vehicle.js from the coding
snippets then even better.

The index.html file

<!DOCTYPE html>

<html lang="en">

 <head>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.11.0/p5.js"></script>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.11.0/addons/p5.sound.min.js"></script>

 <script src="https://unpkg.com/ml5@1/dist/ml5.min.js"></
script>

 <link rel="stylesheet" type="text/css" href="style.css">

 <meta charset="utf-8" />

 </head>

 <body>

 <main>

 </main>

 <script src="sketch.js"></script>

 </body>

</html>

AI module C unit #3 of 4 72 www.elegantAI.org

http://www.elegantAI.org

Now we are going to add the next two files, target.js and
vehicle.js, to our list of files. See figure 1.

Adding target.js and vehicle.js files

AI module C unit #3 of 5 72 www.elegantAI.org

Figure 1: adding the files

http://www.elegantAI.org

This step is easy to forget. Just copy and paste sketch.js and change the
names to target and vehicle. To access the files, just click on them, but
these two new ones should be completely empty. See figure 2.

Adding them to the index.html file

AI module C unit #3 of 6 72 www.elegantAI.org

Figure 2: adding files in index.html

http://www.elegantAI.org

❗ Starting sketch in sketch.js

Note that this is for the sketch.js file (see the heading).

Sketch C3.1 starting sketch

sketch.js

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

}

AI module C unit #3 of 7 72 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #3 of 8 72 www.elegantAI.org

Figure C3.1

http://www.elegantAI.org

We are going to create a target which will just be a circle. This is what
the vehicles (cars) will chase around the canvas. The target becomes a
vector object. From that vector, we pull out the x and y values, which we
will initialise to width/2 and height/2.

🗒 Notes

You get a static target (circle).

🌻 Challenge

Add some colour or even change the shape.

🛠 Code Explanation

Sketch C3.2 target circle

sketch.js

let target

function setup()

{

 createCanvas(400, 400)

}

function draw()

{

 background(220)

 target = createVector(width/2, height/2)

 circle(target.x, target.y, 30)

}

target = createVector(width/2,
height/2)

The target is a vector, its position is in
the centre of the canvas

circle(target.x, target.y, 30) The circle is drawn to the coordinates of
the target (target.x and target.y)

AI module C unit #3 of 9 72 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #3 of 10 72 www.elegantAI.org

Figure C3.2

http://www.elegantAI.org

❗ Now we move over to the target.js file.

We don’t want a stationary target; we want to give it movement, and in
this instance, a random motion called Perlin noise. For this, we need to
create a class called Target.

🗒 Notes

If you haven’t completed the unit coding snippets 4, then here is a
brief explanation of Perlin Noise. Think of it as a continuous random
number where the next random value is dependent on the previous one.
What this means is that there isn’t a wild discrepancy from one value to
the next. This creates the illusion of a smooth, gentle wandering of the
circle.

Imagine a wavy line and the starting point on this wavy line is at 0
(xoff), which will return a value between 0 and +1. If you move along
the line to position 1000 (yoff), you get another value between 0 and +1.
We then inch along this line and we get a random value just a bit more or
a bit less than the previous value. We do this for the x offset and the y
offset; otherwise, we would have the same value for both if they both
started at 0 or 1000, for example.

Sketch C3.3 target class

target.js

class Target

{

 constructor()

 {

 this.xoff = 0

 this.yoff = 1000

 this.position = createVector(0, 0)

 }

}

AI module C unit #3 of 11 72 www.elegantAI.org

http://www.elegantAI.org

🌻 Challenges

1. Have a different starting position on the Perlin noise timeline for the

x and y components.

2. What do you think would happen if they were the same?

🛠 Code Explanation

this.xoff = 0 The initial x value on the perlin noise time

line

this.yoff = 1000 The initial y value on the perlin noise time
line

this.position = createVector() Create a vector for the position of the
target

AI module C unit #3 of 12 72 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #3 of 13 72 www.elegantAI.org

Figure C3.3

http://www.elegantAI.org

We are going to use this randomness to move the target (circle) around
the canvas. So we need to connect the position of the target to the noise
(Perlin) value and then increment along that random wavy line by 0.01 for
x and y. We add our two favourite functions, show() and move().

Sketch C3.4 perlin noise

target.js

class Target

{

 constructor()

 {

 this.xoff = 0

 this.yoff = 1000

 this.position = createVector(0, 0)

 }

 move()

 {

 this.position.x = noise(this.xoff) * width

 this.position.y = noise(this.yoff) * height

 this.xoff += 0.01

 this.yoff += 0.01

 }

 show()

 {

 circle(this.position.x, this.position.y, 30)

 }

}

AI module C unit #3 of 14 72 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We multiply by width and height because the noise() function returns
values between 0 and 1, and we want the target to move between 0 and
the width and height of the canvas.

🌻 Challenge

How would you use the map() function?

🛠 Code Explanation

this.position.x =
noise(this.xoff) * width

We get our target x position from the
perlin noise() function (times the width)

this.position.y =
noise(this.yoff) * height

We get our target y position from the
perlin noise() function (times the height)

this.xoff += 0.01 Increment along the noise time line for x

this.yoff += 0.01 Increment along the noise time line for y

AI module C unit #3 of 15 72 www.elegantAI.org

http://www.elegantAI.org

❗ Back to sketch.js. Comment out and remove the two lines of code
for the circle.

We are going to use the Target class to create a target object and then
run the update() and show() functions from that object. Now you have
a target (circle) wandering around the canvas.

🗒 Notes

The target should be moving around the canvas in a gentle swooping way.

Sketch C3.5 moving target

sketch.js

let target

function setup()

{

 createCanvas(400, 400)

 target = new Target()

}

function draw()

{

 background(220)

 target.move()

 target.show()

 // target = createVector(width/2, height/2)

 // circle(target.x, target.y, 30)

}

AI module C unit #3 of 16 72 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #3 of 17 72 www.elegantAI.org

Figure C3.5

http://www.elegantAI.org

❗ Hop over to vehicle.js

Now we need a vehicle. We will create a Vehicle class, and in its
constructor function, we will have position, velocity, and
acceleration. This should be fairly familiar to you by now.

🗒 Notes

When we create a vehicle, the constructor() function will receive
two arguments, the (x, y) coordinates. Nothing will appear just yet as we
haven’t actually created a vehicle. We previously called them pos, vel,
and acc, just nice to be different.

Sketch C3.6 a vehicle

vehicle.js

class Vehicle

{

 constructor(x, y)

 {

 this.position = createVector(x, y)

 this.velocity = createVector(0, 0)

 this.acceleration = createVector(0, 0)

 }

 show()

 {

 push()

 translate(this.position.x, this.position.y)

 rect(0, 0, 10, 5)

 pop()

 }

}

AI module C unit #3 of 18 72 www.elegantAI.org

http://www.elegantAI.org

❗ Back to sketch.js

Let’s create one vehicle for now at some random position.

🗒 Notes

Every time you run the sketch, you will get another random vehicle
somewhere on the canvas.

🌻 Challenge

Give the vehicle some colour.

Sketch C3.7 random position

sketch.js

let target

let vehicle

function setup()

{

 createCanvas(400, 400)

 target = new Target()

 vehicle = new Vehicle(random(width), random(height))

}

function draw()

{

 background(220)

 target.move()

 target.show()

 vehicle.show()

}

AI module C unit #3 of 19 72 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #3 of 20 72 www.elegantAI.org

Figure C3.7

http://www.elegantAI.org

❗ Moving back to vehicle.js

We will now get the vehicle moving using the usual formula of adding
the components together for movement.

Sketch C3.8 moving towards the target

vehicle.js

class Vehicle

{

 constructor(x, y)

 {

 this.position = createVector(x, y)

 this.velocity = createVector(0, 0)

 this.acceleration = createVector(0, 0)

 this.maxSpeed = 4

 }

 move()

 {

 this.velocity.add(this.acceleration)

 this.velocity.limit(this.maxSpeed)

 this.position.add(this.velocity)

 this.acceleration.mult(0)

 }

 show()

 {

 push()

 translate(this.position.x, this.position.y)

 rect(0, 0, 10, 5)

 pop()

 }

}

AI module C unit #3 of 21 72 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We won’t see anything happen yet (except the target wandering)
because we haven’t the move() function in sketch.js.

🛠 Code Explanation

this.acceleration.mult(0) The acceleration is zeroed so that the

vehicle doesn’t run away with itself

AI module C unit #3 of 22 72 www.elegantAI.org

http://www.elegantAI.org

❗ Because we have covered most of this in the coding snippets 4
unit with the seek() function, I won’t labour this part.

We will want to get it to move towards the target and also to rotate. This
was covered briefly in the coding snippets 4 unit using the
heading() function. Also, we do need to have a maximum force. The
vehicle will be steered towards the target by a force of some magnitude;
we turn the vehicle in that direction. This is where we add the
applyForce() function and the seek() function.

Sketch C3.9 the seek function

vehicle.js

class Vehicle

{

 constructor(x, y)

 {

 this.position = createVector(x, y)

 this.velocity = createVector(0, 0)

 this.acceleration = createVector(0, 0)

 this.maxSpeed = 4

 this.maxForce = 0.2

 }

 move()

 {

 this.velocity.add(this.acceleration)

 this.velocity.limit(this.maxSpeed)

 this.position.add(this.velocity)

 this.acceleration.mult(0)

 }

 applyForce(force)

 {

 this.acceleration.add(force)

AI module C unit #3 of 23 72 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

In the show function, we find the angle from the heading() function
and then rotate the vehicle according to that angle. The seek() and
applyForce() functions are the same as we explored in coding
snippets 4.

🛠 Code Explanation

 }

 seek(target)

 {

 let desired = p5.Vector.sub(target, this.position)

 desired.setMag(this.maxSpeed)

 let steer = p5.Vector.sub(desired, this.velocity)

 steer.limit(this.maxForce)

 this.applyForce(steer)

 }

 show()

 {

 let angle = this.velocity.heading()

 push()

 translate(this.position.x, this.position.y)

 rotate(angle)

 rect(0, 0, 10, 5)

 pop()

 }

}

let angle = this.velocity.heading() We get the angle from the direction
of the velocity vector

rotate(angle) We rotate the vehicle by that angle

AI module C unit #3 of 24 72 www.elegantAI.org

http://www.elegantAI.org

❗ Return to sketch.js

We create a vector for the position of the target and then seek that
vector.

🗒 Notes

The vehicle now follows the target; job done! It is quite mesmerising
to watch.

Sketch C3.10 seek and ye shall find

sketch.js

let target

let vehicle

function setup()

{

 createCanvas(400, 400)

 target = new Target()

 vehicle = new Vehicle(random(width), random(height))

}

function draw()

{

 background(220)

 let m = createVector(target.position.x, target.position.y)

 target.move()

 target.show()

 vehicle.seek(m)

 vehicle.move()

 vehicle.show()

}

AI module C unit #3 of 25 72 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #3 of 26 72 www.elegantAI.org

Figure C3.10

http://www.elegantAI.org

We are now going to create 50 of these vehicles. We will replace a
number of lines of code to move from the single vehicle to an array of
vehicles.

Sketch C3.11 more vehicles

sketch.js

let target

let vehicles = []

function setup()

{

 createCanvas(400, 400)

 target = new Target()

 for (let i = 0; i < 50; i++)

 {

 vehicles[i] = new Vehicle(random(width), random(height))

 }

}

function draw()

{

 background(220)

 let m = createVector(target.position.x, target.position.y)

 target.move()

 target.show()

 for (let vehicle of vehicles)

 {

 vehicle.seek(m)

 vehicle.move()

 vehicle.show()

 }

}

AI module C unit #3 of 27 72 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

You should have a whole bunch of vehicles following the target, as
shown in figure C3.11. Each vehicle will start from a different
random position but eventually coalesce into one vehicle.

🌻 Challenge

Try different numbers of vehicles

AI module C unit #3 of 28 72 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #3 of 29 72 www.elegantAI.org

Figure C3.11

http://www.elegantAI.org

Although much of the neural network stuff we have already covered is
used here in this module and unit, there is a subtle difference. We can see
it in the lines of code in the next sketch as we add the neural network
brain to the vehicles. First of all, we give the brain the inputs and
outputs:

The five inputs are:

1⃣ The x component of the vector between the vehicle and the target

2⃣ The y component of the vector between the vehicle and the target

3⃣ The distance between the target and the vehicle

4⃣ The x component of the velocity of the vehicle

5⃣ The y component of the velocity of the vehicle

The outputs are:

1⃣ The angle the vehicle must turn to move towards the target

2⃣ The magnitude of the power to move it to the target

Then we are going to give it the task: regression. However, here is the
big difference: we will inform the neural network that this is a
neuroevolution network with the neuroEvolution: true line of code.
Then, finally, we inform the neural network that we are not doing any
training with the noTraining: true line of code.

Remember that this is a Reinforcement Learning challenge; there is
no data for the neural network to learn from. We are simply going to
select the best brains (neural networks) that appear to solve the challenge
without hardcoding the vehicles with the seek() function, which really is
the simple solution to this challenge.

A neuroevolution brain

AI module C unit #3 of 30 72 www.elegantAI.org

http://www.elegantAI.org

❗ Bob over to vehicle.js

In the Vehicle class, we give the vehicle a brain. The brain is the
neural network which has five inputs and two outputs. There will be 50
brains driving their own vehicles.

Sketch C3.12 giving the vehicle a brain

vehicle.js

class Vehicle

{

 constructor(x, y)

 {

 this.position = createVector(x, y)

 this.velocity = createVector(0, 0)

 this.acceleration = createVector(0, 0)

 this.maxSpeed = 4

 this.maxForce = 0.2

 ml5.setBackend("cpu")

 this.brain = ml5.neuralNetwork({

 inputs: 5,

 outputs: 2,

 task: "regression",

 neuroEvolution: true,

 noTraining: true

 })

 }

 move()

 {

 this.velocity.add(this.acceleration)

 this.velocity.limit(this.maxSpeed)

 this.position.add(this.velocity)

 this.acceleration.mult(0)

AI module C unit #3 of 31 72 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Notice that this is a regression task; it is also not a normal neural
network. This means we can access the mutate() and crossover()
functions later as part of the neuroevolution network we will implement
later.

 }

 applyForce(force)

 {

 this.acceleration.add(force)

 }

 seek(target)

 {

 let desired = p5.Vector.sub(target, this.position)

 desired.setMag(this.maxSpeed)

 let steer = p5.Vector.sub(desired, this.velocity)

 steer.limit(this.maxForce)

 this.applyForce(steer)

 }

 show()

 {

 let angle = this.velocity.heading()

 push()

 translate(this.position.x, this.position.y)

 rotate(angle)

 rect(0, 0, 10, 5)

 pop()

 }

}

AI module C unit #3 of 32 72 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

neuroEvolution: true, This is a neuroevolution challenge

noTraining: true We are not doing any training

AI module C unit #3 of 33 72 www.elegantAI.org

http://www.elegantAI.org

From the inputs, we need to know how much to steer the vehicles. For
that, we need to know their velocity, their position relative to the
target, and the desired velocity. This is all about magnitude and direction
at the end of the day. We do need to do a bit of normalising so that
things don’t get out of control, hence dividing things by the width or the
maxSpeed.

We are going to rewrite the entire seek(target) function in the
Vehicle class. Nothing will happen (except an error message) because we
have done nothing about the outputs, which will determine the force to
move the vehicle.

There is a lot to unpack in the seek() function. These are our five inputs
for the neural network, hence the refactoring.

Sketch C3.13 steering the vehicles

vehicle.js

class Vehicle

{

 constructor(x, y)

 {

 this.position = createVector(x, y)

 this.velocity = createVector(0, 0)

 this.acceleration = createVector(0, 0)

 this.maxSpeed = 4

 this.maxForce = 0.2

 ml5.setBackend("cpu")

 this.brain = ml5.neuralNetwork({

 inputs: 5,

 outputs: 2,

 task: "regression",

 neuroEvolution: true,

 noTraining: true

 })

AI module C unit #3 of 34 72 www.elegantAI.org

http://www.elegantAI.org

 }

 move()

 {

 this.velocity.add(this.acceleration)

 this.velocity.limit(this.maxSpeed)

 this.position.add(this.velocity)

 this.acceleration.mult(0)

 }

 applyForce(force)

 {

 this.acceleration.add(force)

 }

 seek(target)

 {

 let v = p5.Vector.sub(target.position, this.position)

 let distance = v.mag() / width

 v.normalize()

 let inputs = [

 v.x,

 v.y,

 distance,

 this.velocity.x / this.maxSpeed,

 this.velocity.y / this.maxSpeed

]

 }

 show()

 {

 let angle = this.velocity.heading()

 push()

AI module C unit #3 of 35 72 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

You will get an error if you try to run it now, so don’t try. The variable v
is a vector of the difference between any one vehicle’s position and the
target position. We then get the distance from the magnitude of that
difference (mag()). We then normalise the vector v before creating the
five inputs from all that data.

🛠 Code Explanation

 translate(this.position.x, this.position.y)

 rotate(angle)

 rect(0, 0, 10, 5)

 pop()

 }

}

v = p5.Vector.sub(target.position,
this.position)

Subtracting two vectors to get a third
vector v

distance = v.mag() / width
Distance is the magnitude of the
vector v, reducing the magnitude by
the width

v.normalize() Normalising v

v.x The x component of the vector v

v.y The y component of the vector v

this.velocity.x / this.maxSpeed Reducing the x component of the
velocity by the maxSpeed

this.velocity.y / this.maxSpeed Reducing the y component of the
velocity by the maxSpeed

AI module C unit #3 of 36 72 www.elegantAI.org

http://www.elegantAI.org

❗ Back to sketch.js

Now for the outputs. We have two outputs, the angle and the magnitude.
The predicted values are random. They take in the values from the inputs,
then generate outputs that are meaningless. Also, you will notice that in
the brain there is an argument for noTraining. This is because we are
not using any data to train the neural network; we are just choosing to
select the best performing ones. So when you run this, they just disappear
off into the distance.

❗ We will remove:

	 let m = createVector(target.position.x, target.position.y)
and replace with:

	 vehicle.seek(target)

Sketch C3.14 the outputs

sketch.js

let target

let vehicles = []

function setup()

{

 createCanvas(400, 400)

 target = new Target()

 for (let i = 0; i < 50; i++)

 {

 vehicles[i] = new Vehicle(random(width), random(height))

 }

}

function draw()

{

 background(220)

 // let m = createVector(target.position.x, target.position.y)

 target.move()

 target.show()

AI module C unit #3 of 37 72 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

You will get static vehicles.

 for (let vehicle of vehicles)

 {

 vehicle.seek(target)

 vehicle.move()

 vehicle.show()

 }

}

AI module C unit #3 of 38 72 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #3 of 39 72 www.elegantAI.org

Figure C3.14

http://www.elegantAI.org

❗ Skip over to vehicle.js.

Now let’s get them moving.

Sketch C3.15 they move

vehicle.js

class Vehicle

{

 constructor(x, y)

 {

 this.position = createVector(x, y)

 this.velocity = createVector(0, 0)

 this.acceleration = createVector(0, 0)

 this.maxSpeed = 4

 this.maxForce = 0.2

 ml5.setBackend("cpu")

 this.brain = ml5.neuralNetwork({

 inputs: 5,

 outputs: 2,

 task: "regression",

 neuroEvolution: true,

 noTraining: true

 })

 }

 move(target)

 {

 this.velocity.add(this.acceleration)

 this.velocity.limit(this.maxSpeed)

 this.position.add(this.velocity)

 this.acceleration.mult(0)

 }

AI module C unit #3 of 40 72 www.elegantAI.org

http://www.elegantAI.org

 applyForce(force)

 {

 this.acceleration.add(force)

 }

 seek(target)

 {

 let v = p5.Vector.sub(target.position, this.position)

 let distance = v.mag() / width

 v.normalize()

 let inputs = [

 v.x,

 v.y,

 distance,

 this.velocity.x / this.maxSpeed,

 this.velocity.y / this.maxSpeed

]

 let outputs = this.brain.predictSync(inputs)

 let angle = outputs[0].value * TWO_PI

 let magnitude = outputs[1].value

 let force = p5.Vector.fromAngle(angle)

 force.setMag(magnitude)

 this.applyForce(force)

 }

 show()

 {

 let angle = this.velocity.heading()

 push()

 translate(this.position.x, this.position.y)

 rotate(angle)

 rect(0, 0, 10, 5)

 pop()

AI module C unit #3 of 41 72 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

They move, but they just wander off into the sunset! This is because they
have no reason to do otherwise.

🛠 Code Explanation

 }

}

outputs =
this.brain.predictSync(inputs)

predictSync() means it waits for the
inputs before predicting

angle = outputs[0].value * TWO_PI
The outputs index [0] is the angle
which we multiply by 2π (to scale the
output value

magnitude = outputs[1].value The outputs index [1] is the magnitude

force = p5.Vector.fromAngle(angle) The function fromAngle() creates a
vector from an angle in radians

AI module C unit #3 of 42 72 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #3 of 43 72 www.elegantAI.org

Figure C3.15

http://www.elegantAI.org

For this to evolve, we need to attribute a fitness score to each vehicle. We
need to know a number of things; one of the main indicators is how close
the vehicle gets to the target, so we move an imaginary circle, which will
help us know when the target and the vehicle overlap. We call the vehicle
radius l, and for the target, we will call this r.

Sketch C3.16 fitness scores

vehicle.js

class Vehicle

{

 constructor(x, y)

 {

 this.position = createVector(x, y)

 this.velocity = createVector(0, 0)

 this.acceleration = createVector(0, 0)

 this.l = 5

 this.fitness = 0

 this.maxSpeed = 4

 this.maxForce = 0.2

 ml5.setBackend("cpu")

 this.brain = ml5.neuralNetwork({

 inputs: 5,

 outputs: 2,

 task: "regression",

 neuroEvolution: true,

 noTraining: true

 })

 }

 move()

 {

 this.velocity.add(this.acceleration)

 this.velocity.limit(this.maxSpeed)

AI module C unit #3 of 44 72 www.elegantAI.org

http://www.elegantAI.org

 this.position.add(this.velocity)

 this.acceleration.mult(0)

 let d = p5.Vector.dist(this.position, target.position)

 if (d < this.l + target.r)

 {

 this.fitness++

 }

 }

 applyForce(force)

 {

 this.acceleration.add(force)

 }

 seek(target)

 {

 let v = p5.Vector.sub(target.position, this.position)

 let distance = v.mag() / width

 v.normalize()

 let inputs = [

 v.x,

 v.y,

 distance,

 this.velocity.x / this.maxSpeed,

 this.velocity.y / this.maxSpeed

]

 let outputs = this.brain.predictSync(inputs)

 let angle = outputs[0].value * TWO_PI

 let magnitude = outputs[1].value

 let force = p5.Vector.fromAngle(angle)

 force.setMag(magnitude)

 this.applyForce(force)

 }

AI module C unit #3 of 45 72 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We haven’t actually defined r yet (see next sketch).

🛠 Code Explanation

 show()

 {

 let angle = this.velocity.heading()

 push()

 translate(this.position.x, this.position.y)

 rotate(angle)

 rect(0, 0, this.l*2, this.l)

 pop()

 }

}

d = p5.Vector.dist(this.position,
target.position)

We calculate the distance between the
position of each vehicle and the target

if (d < this.l + target.r)
If the distance is less than the l value
(5) and the r value (15 in next sketch)
combined then…

this.fitness++ Increase the fitness score of that
particular vehicle

AI module C unit #3 of 46 72 www.elegantAI.org

http://www.elegantAI.org

❗ Mosey on over to target.js.

We need a variable for the radius r of the circle (target) to measure
the fitness.

Sketch C3.17 we ned a radius

target.js

class Target

{

 constructor()

 {

 this.xoff = 0

 this.yoff = 1000

 this.position = createVector(0, 0)

 this.r = 15

 }

 move()

 {

 this.position.x = noise(this.xoff) * width

 this.position.y = noise(this.yoff) * height

 this.xoff += 0.01

 this.yoff += 0.01

 }

 show()

 {

 circle(this.position.x, this.position.y, this.r * 2)

 }

}

AI module C unit #3 of 47 72 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We now have a variable so we can compare the distance between the
vehicle and the target.

AI module C unit #3 of 48 72 www.elegantAI.org

http://www.elegantAI.org

❗ Back we go to sketch.js.

So we have added a fitness to each vehicle, and those that pass within a
distance of r + l (they overlap) their fitness will increase. This is all prep
for later on as we add in more features. Yet we do need to normalise the
fitness of the vehicle; otherwise, you will get huge differences. We do this
very simply by adding up all the fitnesses (sum) and dividing an individual
vehicle’s fitness by that total value (sum) of all the fitnesses together. This
means that they all add up to 1, which is important later on.

Sketch C3.18 overlap

sketch.js

let target

let vehicles = []

function setup()

{

 createCanvas(400, 400)

 target = new Target()

 for (let i = 0; i < 50; i++)

 {

 vehicles[i] = new Vehicle(random(width), random(height))

 }

}

function draw()

{

 background(220)

 target.move()

 target.show()

 for (let vehicle of vehicles)

 {

 vehicle.seek(target)

 vehicle.move()

AI module C unit #3 of 49 72 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

The vehicle of vehicles goes through the array of vehicles, one
by one. We have created this new function, but nothing will happen until
we call it.

🌻 Challenge

You could change the name to (thing of vehicles), and so what else would
you have to change?

🛠 Code Explanation

 vehicle.show()

 }

}

function normaliseFitness()

{

 let sum = 0

 for (let vehicle of vehicles)

 {

 sum += vehicle.fitness

 }

 for (let vehicle of vehicles)

 {

 vehicle.fitness = vehicle.fitness / sum

 }

}

sum = 0 The total (sum) starts with zero

sum += vehicle.fitness Go through all the vehicles adding their
fitness scores as we go along

vehicle.fitness =
vehicle.fitness / sum

Change the fitness score of each vehicle
by dividing by the total (sum)

AI module C unit #3 of 50 72 www.elegantAI.org

http://www.elegantAI.org

The next step is to select the highest-scoring vehicles, the ones with the
best fitness. However, this isn’t very natural, even if it seems very logical.
This is an approach you might consider whereby you walk through the
population array, picking out the highest pairs of values and mating them,
and removing them from the array before looking for the next highest
pair.

Instead, we will use what is called weighted selection, which still
gives every vehicle a chance to be selected but will favour those who have
the highest fitness. The way that Dan Shiffman explained it in his
brilliant book Nature of Code is summarised thus:

Imagine that you are in a relay race; the race starts, and you hand over
the baton to the next runner, and so on, until your team reaches the end
of the race. But instead of each runner running the same distance on each
leg of the relay, the fittest runs a longer leg based on their fitness, and
the least fit runs a shorter leg, and this is where the analogy breaks down
a bit; the winner is the runner that crosses the line first.

This means that it is possible for any runner (depending on the distance of
the race) to potentially win, although the fittest runner has a higher
probability of winning because it is more likely that they will be there at
the end when they cross the finishing line.

If you read the code below, you can see how that works, even if it isn’t
very intuitive. I will include a link to the website that has the book online
for you to read.

Weighted selection

AI module C unit #3 of 51 72 www.elegantAI.org

http://www.elegantAI.org

We want to reproduce with the better vehicles based on their fitness. But
first, we need to decide which ones are the best and select their brains.
For this, we use a technique called weighted selection. This is a more
realistic way of natural selection. The best ones will still have the best
chance, so it isn’t purely random, but it does give other lesser vehicles to
reproduce as well.

It uses a probability, random(1), which is the length of the race between
0 and 1. It then goes through the array, reducing that distance (called
start) until it reaches the end (0). Whichever vehicle crosses the line at
the end is the winner. The clock stops (the array stops, hence index--),
then continues again with the array from where we left off, with a new
random number (race distance) and sees who the winner is on this occasion
until we have gone through the whole array of vehicles (population).

Remember that the fitness score of all the vehicles adds up to 1.

Sketch C3.19 the relay race

sketch.js

let target

let vehicles = []

function setup()

{

 createCanvas(400, 400)

 target = new Target()

 for (let i = 0; i < 50; i++)

 {

 vehicles[i] = new Vehicle(random(width), random(height))

 }

}

function draw()

{

 background(220)

AI module C unit #3 of 52 72 www.elegantAI.org

http://www.elegantAI.org

 target.move()

 target.show()

 for (let vehicle of vehicles)

 {

 vehicle.seek(target)

 vehicle.move()

 vehicle.show()

 }

}

function normaliseFitness()

{

 let sum = 0

 for (let vehicle of vehicles)

 {

 sum += vehicle.fitness

 }

 for (let vehicle of vehicles)

 {

 vehicle.fitness = vehicle.fitness / sum

 }

}

function weightedSelection()

{

 let index = 0

 let start = random(1)

 while (start > 0)

 {

 start = start - vehicles[index].fitness

 index++

 }

 index--

AI module C unit #3 of 53 72 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

This is a bit challenging to get your head around at first. This approach is
memory-efficient but computationally more challenging; this is only a
problem if there is a very large population where another approach might
be better.

🌻 Challenge

Can you think of a better way?

🛠 Code Explanation

 return vehicles[index].brain

}

index = 0 We begin with the first in the array of
population, this is our first runner

start = random(1) We create a random number between 0 and 1,
this is the length of the race

while (start > 0) We keep going until we reach the end of the
race

start = start -
vehicles[index].fitness

We remove the fitness score for that vehicle
(runner) reducing the start random value (race
distance)

index++ Go to the next vehicle (runner)

index-- When finished stop the race

return vehicles[index].brain Get the detail of the best vehicle (runner)

AI module C unit #3 of 54 72 www.elegantAI.org

http://www.elegantAI.org

We want a lifespan for the current vehicles, say 250 frames, so that
just before they die off, they reproduce a better version of themselves.
They don’t all mate; only those who have a reasonably high fitness.

From the weighted selection, we chose two parents and created a
child through crossover, where the child will carry some of the genes
from each parent. This child will have a mutation rate. This is important;
otherwise, the gene pool becomes stagnant. There needs to be some
element of randomness. This is often seen in nature. If those mutations are
useful, they can be incorporated; otherwise, they die off.

The ml5.js machine learning library has a built-in function for
crossover() and mutation() which is a relatively new addition but
ever so helpful if you are developing simulations or games.

The crossover() function simply takes some of the weights of one
successful parent’s neural network with the weights of another successful
parent’s neural network and, in some way, combines them to produce a new
neural network with these combined weights. There are various ways this
can be done, but that is for another discussion. For now, let us just make
use of it.

Reproduction

AI module C unit #3 of 55 72 www.elegantAI.org

http://www.elegantAI.org

To create the next generation, we need to create a new function and we
will call reproduction(). Here, we will create the next generation of
children, which will be the same length as our first generation. This is a
holding array called nextVehicles, and once we have filled it, we will
rename it vehicles.

Sketch C3.20 the next generation

sketch.js

let target

let vehicles = []

function setup()

{

 createCanvas(400, 400)

 target = new Target()

 for (let i = 0; i < 50; i++)

 {

 vehicles[i] = new Vehicle(random(width), random(height))

 }

}

function draw()

{

 background(220)

 target.move()

 target.show()

 for (let vehicle of vehicles)

 {

 vehicle.seek(target)

 vehicle.move()

 vehicle.show()

 }

}

AI module C unit #3 of 56 72 www.elegantAI.org

http://www.elegantAI.org

function normaliseFitness()

{

 let sum = 0

 for (let vehicle of vehicles)

 {

 sum += vehicle.fitness

 }

 for (let vehicle of vehicles)

 {

 vehicle.fitness = vehicle.fitness / sum

 }

}

function weightedSelection()

{

 let index = 0

 let start = random(1)

 while (start > 0)

 {

 start = start - vehicles[index].fitness

 index++

 }

 index--

 return vehicles[index].brain

}

function reproduction()

{

 let nextVehicles = []

 for (let i = 0; i < vehicles.length; i++)

 {

 let parentA = weightedSelection()

AI module C unit #3 of 57 72 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Notice that we have an extra argument for creating the next generation
of vehicle, the child. We will need to add it to the constructor()
function in the Vehicle class.

🛠 Code Explanation

 let parentB = weightedSelection()

 let child = parentA.crossover(parentB)

 child.mutate(0.01)

 nextVehicles[i] = new Vehicle(random(width), random(height),
child)

 }

 vehicles = nextVehicles

}

nextVehicles = [] We create an empty array for the new
vehicles.

parentA = weightedSelection() Select the first parent, call the
weightedSelection() function

parentB = weightedSelection() Select the second parent, call the
weightedSelection() function

child.mutate(0.01) When the child is created apply a tiny
mutation rate of 0.01

nextVehicles[i] = new
Vehicle(random(width),
random(height), child)

Create a new vehicle from the child

vehicles = nextVehicles Rename all the new vehicles: vehicles

AI module C unit #3 of 58 72 www.elegantAI.org

http://www.elegantAI.org

❗ Go over to vehicle.js.

You may have noticed that when we create a new Vehicle(), we have
included a third argument called child. This is effectively the brain, but
when we originally created a vehicle, we only used two arguments, the x
and the y position. So we need to factor that in when creating our second
generation and onwards. We need to check if there is a brain in the first
place, and if we have, then we update it with the new one.

We get around this by checking to see if there is already a brain and
replacing it. If there isn’t a brain, we give it one. We alter the
constructor() function of the Vehicle class as appropriate.

❗ We create an if…else() statement to check whether the vehicle already
has a brain and if not, then create one. We have moved the neural network
(brain) inside the else() statement, hence it is highlighted.

Sketch C3.21 birth of a child

vehicle.js

class Vehicle

{

 constructor(x, y, brain)

 {

 this.position = createVector(x, y)

 this.velocity = createVector(0, 0)

 this.acceleration = createVector(0, 0)

 this.l = 5

 this.fitness = 0

 this.maxSpeed = 4

 this.maxForce = 0.2

 if (brain)

 {

 this.brain = brain

 }

 else

AI module C unit #3 of 59 72 www.elegantAI.org

http://www.elegantAI.org

 {

 ml5.setBackend("cpu")

 this.brain = ml5.neuralNetwork({

 inputs: 5,

 outputs: 2,

 task: "regression",

 neuroEvolution: true,

 noTraining: true

 })

 }

 }

 move()

 {

 this.velocity.add(this.acceleration)

 this.velocity.limit(this.maxSpeed)

 this.position.add(this.velocity)

 this.acceleration.mult(0)

 let d = p5.Vector.dist(this.position, target.position)

 if (d < this.l + target.r)

 {

 this.fitness++

 }

 }

 applyForce(force)

 {

 this.acceleration.add(force)

 }

 seek(target)

 {

 let v = p5.Vector.sub(target.position, this.position)

AI module C unit #3 of 60 72 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

If you run it, you shouldn’t get any errors, but neither will you see the
next generation just yet. We need to have a lifespan so that the
previous generation dies out and the next is birthed.

 let distance = v.mag() / width

 v.normalize()

 let inputs = [

 v.x,

 v.y,

 distance,

 this.velocity.x / this.maxSpeed,

 this.velocity.y / this.maxSpeed

]

 let outputs = this.brain.predictSync(inputs)

 let angle = outputs[0].value * TWO_PI

 let magnitude = outputs[1].value

 let force = p5.Vector.fromAngle(angle)

 force.setMag(magnitude)

 this.applyForce(force)

 }

 show()

 {

 let angle = this.velocity.heading()

 push()

 translate(this.position.x, this.position.y)

 rotate(angle)

 rect(0, 0, this.l*2, this.l)

 pop()

 }

}

AI module C unit #3 of 61 72 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

constructor(x, y, brain) Added the brain (child) component argument to

the constructor function

if (brain) Check to see if the vehicle already has a brain

this.brain = brain If it does then replace it with the new brain
(child)

AI module C unit #3 of 62 72 www.elegantAI.org

http://www.elegantAI.org

❗ Return to sketch.js.

All we have got left to do is give the vehicle a lifespan and then
reproduce it. We need to count the number of iterations rather than
actual frames (which is another way of doing it); this way, we could have a
countdown. We are also going to keep track of how many generations
there are and display this later on.

Sketch C3.22 lifeCounter

sketch.js

let target

let vehicles = []

let lifeSpan = 250

let lifeCounter = 0

let generations = 0

function setup()

{

 createCanvas(400, 400)

 target = new Target()

 for (let i = 0; i < 50; i++)

 {

 vehicles[i] = new Vehicle(random(width), random(height))

 }

}

function draw()

{

 background(220)

 target.move()

 target.show()

 for (let vehicle of vehicles)

 {

 vehicle.seek(target)
AI module C unit #3 of 63 72 www.elegantAI.org

http://www.elegantAI.org

 vehicle.move()

 vehicle.show()

 }

 lifeCounter++

 if (lifeCounter > lifeSpan)

 {

 normaliseFitness()

 reproduction()

 lifeCounter = 0

 generations++

 }

}

function normaliseFitness()

{

 let sum = 0

 for (let vehicle of vehicles)

 {

 sum += vehicle.fitness

 }

 for (let vehicle of vehicles)

 {

 vehicle.fitness = vehicle.fitness / sum

 }

}

function weightedSelection()

{

 let index = 0

 let start = random(1)

 while (start > 0)

 {

 start = start - vehicles[index].fitness

AI module C unit #3 of 64 72 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

You should now see the generations appearing. They should also start
to follow the target after a little while (you have to be patient). If you
are impatient, then look at the next sketch.

🌻 Challenges

1. Add colour or images (instead of rectangles) to the scene.

2. How would you go about creating a 3D version (not easy but not

impossible)?

 index++

 }

 index--

 return vehicles[index].brain

}

function reproduction()

{

 let nextVehicles = []

 for (let i = 0; i < vehicles.length; i++)

 {

 let parentA = weightedSelection()

 let parentB = weightedSelection()

 let child = parentA.crossover(parentB)

 child.mutate(0.01)

 nextVehicles[i] = new Vehicle(random(width), random(height),
child)

 }

 vehicles = nextVehicles

}

AI module C unit #3 of 65 72 www.elegantAI.org

http://www.elegantAI.org

🛠 Code Explanation

lifeSpan = 250 The life of a vehicle

lifeCounter = 0 Keeps track of how many iterations there have
been

generations = 0 Counts the number of generations

lifeCounter++ Counts the number of iterations, adding 1 each
time

if (lifeCounter > lifeSpan) Check is to see if the vehicles have reached the
end of their lifespan

normaliseFitness() The fitness is normalised at the end of each
generation

reproduction() The reproduction happens at the end of the
generation

lifeCounter = 0 Reset the counter

generations++ Add another generation to the tally

AI module C unit #3 of 66 72 www.elegantAI.org

http://www.elegantAI.org

In a sense, you have done it. If you watch long enough, you will see the
changes take place. The vehicles will start to follow the target as
they evolve through the improved fitness levels of those who are
successful. This, however, is a slow process, and there is a way of speeding
it up and also having a bit more information on the number of
generations you are at.

We can use a slider to speed up the process. Remember that the
computer can do this much faster than we are watching it. This is so we
can see it happening in real time, as it were.

You can be as creative as you want. I created some bees following a honey
pot.

What next?

AI module C unit #3 of 67 72 www.elegantAI.org

http://www.elegantAI.org

Adding a slider, what we are doing is increasing the rate of iterations as
another for() loop within draw(). We can also see the number of
generations; this helps get an idea of how many generations have
passed. The create slider function has three arguments: the minimum value
(1), the maximum value (20), and the increment value (1).

Sketch C3.23 adding a slider

sketch.js

let target

let vehicles = []

let lifeSpan = 250

let lifeCounter = 0

let generations = 0

let timeSlider

function setup()

{

 createCanvas(400, 400)

 target = new Target()

 for (let i = 0; i < 50; i++)

 {

 vehicles[i] = new Vehicle(random(width), random(height))

 }

 timeSlider = createSlider(1, 20, 1)

 timeSlider.position(10, 420)

}

function draw()

{

 background(220)

 target.show()

 for (let vehicle of vehicles)

 {

AI module C unit #3 of 68 72 www.elegantAI.org

http://www.elegantAI.org

 vehicle.show()

 }

 for (let i = 0; i < timeSlider.value(); i++)

 {

 for (let vehicle of vehicles)

 {

 vehicle.seek(target)

 vehicle.move()

 }

 target.move()

 lifeCounter++

 }

 if (lifeCounter > lifeSpan)

 {

 normaliseFitness()

 reproduction()

 lifeCounter = 0

 generations++

 }

 textSize(40)

 text(generations, 10, 380)

}

function normaliseFitness()

{

 let sum = 0

 for (let vehicle of vehicles)

 {

 sum += vehicle.fitness

 }

 for (let vehicle of vehicles)

AI module C unit #3 of 69 72 www.elegantAI.org

http://www.elegantAI.org

 {

 vehicle.fitness = vehicle.fitness / sum

 }

}

function weightedSelection()

{

 let index = 0

 let start = random(1)

 while (start > 0)

 {

 start = start - vehicles[index].fitness

 index++

 }

 index--

 return vehicles[index].brain

}

function reproduction()

{

 let nextVehicles = []

 for (let i = 0; i < vehicles.length; i++)

 {

 let parentA = weightedSelection()

 let parentB = weightedSelection()

 let child = parentA.crossover(parentB)

 child.mutate(0.01)

 nextVehicles[i] = new Vehicle(random(width), random(height),
child)

 }

 vehicles = nextVehicles

}

AI module C unit #3 of 70 72 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Moving the slider along until around 150 iterations shows a huge
improvement in their attraction to the target.

🌻 Challenge

Try other values

AI module C unit #3 of 71 72 www.elegantAI.org

http://www.elegantAI.org

AI module C unit #3 of 72 72 www.elegantAI.org

Figure C3.23

http://www.elegantAI.org

