Artificial
Intelligence
Module C

¥ Content

Module C Unit #4 flappy bird

Introduction to flappy bird neuroevolution

The basic game

The index.html file (dont forget)

Sketch C4.1
Sketch C4.2
Sketch C4.3
Sketch C4.4
Sketch C4.5
Sketch C4.6
Sketch C4.7
Sketch C4.8
Sketch C4.9
Sketch C4.10
Sketch C4.11

Adding the brain

Sketch C4.12
Sketch C4.13
Sketch C4.14
Sketch C4.15
Sketch C4.16
Sketch C4.17
Sketch C4.18
Sketch C4.19
Sketch C4.20
Sketch C4.21
Sketch C4.22
Sketch C4.23
Sketch C4.24
Sketch C4.25
Sketch C4.26
Sketch C4.27
Sketch C4.28
Sketch C4.29
Sketch C4.30

AI module C unit #4

starting sketch
Bird class
gravity

pipes

drawing the pipes
collision

drawing the bird!
mouse pressed
oops

culling the array
splice the pipe

simple bird brain
next pipe please
input data

normalise
synchronicity
population of birds
to flap or not to flap
GPU v CPU

bird fitness

the bird is dead
collision

is anyone there
mating the best ones
normalising fitness
crossover

mutation

next generation

a new brain

reset and off we go again

2 of 91

www.elegantAlorg

http://www.elegantAI.org

Sketch C4.31 eliminating silly birds

AI module C unit #4 3 of 91 www.elegantAl.org

http://www.elegantAI.org

¥ Introduction to flappy bird neuroevolution

Flappy Bird is a relatively simple and yet very addictive game. It is a game
that many emulate in various coding languages, and p5.js is no exception.
In this module, we will start from scratch but not make a full working
game. The basic game has a bird that flaps its wings and goes up when
you tap the space bar (or click the mouse) and falls towards the ground
when you stop. It has to fly through a series of gaps created by random
pipes. The idea is fo make it through all the pipes without hitting one for
as long as possible.

We are going to give the bird a brain, a neural network, and see if we can
train it fo play the game through using a genetic algorithm approach,
which is a form of reinforcement learning. This is another neuroevolution
solution similar to the smart cars example previously. That one was a
regression task; this one is a classification task.

In the same process as before, those birds that last the longest will have
the best fitness scores and will pass on their genes (weights) to the next
generation (population).

Each bird will have a brain that has a random set of weights. We want to
use. The following data in our neural network as inputs:

@) The y position of the bird

& The bird's velocity

&) The position of the top (or bottom) pipe
&) The x position of the pipes

The reason that we can have four and not five inputs is that the distance
between the position of the top and bottom pipe is a constant (gap). This is
a classification problem because the output is either to jump up or not to
jump; our outputs are:

& jump
& not jump

AT module C unit #4 4 of 91 www.elegantAlorg

http://www.elegantAI.org

To summarise our bird brain, we could have a hidden layer of, say, eight
nodes, so the feedforward neural network will have the following:

4 inputs
8 hidden nodes
2 outputs

= B B B

plus 2 biases

AI module C unit #4 5 of 91 www.elegantAlorg

http://www.elegantAI.org

The basic game

First, we need fo code the basic game before we do anything clever with
neural networks and genetic algorithms. We need two files on top of the
sketch.js main file. We also need to add the ml5.js line of code to the
index.html file. The two named files are:

% bird.js
¥ pipes.js

You will have done this in the previous unit, so I wont repeat the process
here in any detail. What you should have is shown in figure 1 below.

Figure 1
m File v Editw Sketch v Help v English v Hello, TheHappyCoder! v
° . Auto-refresh ml5js # by TheHappyCoder a
Sketch Files + < index.html Saved: 1 minute ago Preview
src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/1.11.1/p5.js">
* bird. js </script>
B index.html ¥ 5 <script
IS pipes. js src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/1.11.1/addons/p5.s
IS sketch. js ound.min. js"></script>
8 style.css 6 <script src="https://unpkg.com/ml5€@1/dist/ml5.min. js"></script>
7 <link rel="stylesheet" type="text/css" href="style.css">
8 <meta charset="utf-8" />
9
10 </head>
11 <body>
12 <main>
13 </main>
14 <script src="sketch.js"></script>
15 <script src="bird.js"></script>
16 <script src="pipes.js"></script>
17 </body>
18 </html>
Console Clear WV

AI module C unit #4 6 of 91 www.elegantAl.org

http://www.elegantAI.org

-£ The index.html file (dont forget)

Adding the ml5.js line of code, as well as the files.

<!DOCTYPE html>
<html lang="en">
<head>

<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.11.1/p5.js"></script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/
1.11.1/addons/p5.sound.min. js"></script>

<script src="https://unpkg.com/ml5@1/dist/ml5.min.js"></
script>

<link rel="stylesheet" type="text/css" href="style.css">

<meta charset="utf-8" />

</head>

<body>
<main>
</main>
<script src="sketch.js"></script>
<script src="bird.js"></script>
<script src="pipes.js'"></script>

</body>

</html>

AT module C unit #4 7 of 91 www.elegantAlorg

http://www.elegantAI.org

¥ Sketch Cé4.1 starting sketch

Our main starting sketch in sketch.js, with a wider and thinner canvas

of 600 by 200.

sketch.js

function setup()

{
createCanvas (600, 200)

function draw()

{
background(220)

HERE

,~ Notes

We have a long, thin canvas because of the nature of the game; you can

do it with 400 by 400 if you wish.

AI module C unit #4

8 of 91

www.elegantAlorg

http://www.elegantAI.org

Figure C4.1

m File w Editw Sketchw Help v English v Hello, TheHappyCoder! v

Sketch Files + < sketchjs Saved: 15 minutes ago Preview
JS bird.js .

1 function setup()
B index.html 2v|{
’5 pipes. js 3 createCanvas(600, 200)
JS sketch. js v 4 }
B style.css S

6 function draw()

7v/{

8 background(220)

9 |}

Console Clear Vv

AI module C unit #4 9 of 91 www.elegantAl.org

http://www.elegantAI.org

% Sketch C4.2 Bird class

T Move to bird.js.
In bird.js, we are going to create a Bird class with a constructor()
function. It will have an X horizontal value, which will stay constant as the
pipes effectively come towards it rather than the other way round. A y
vertical value will vary when the mouse is clicked. The velocity will be
zero initially. There will be some gravity so that it falls to the ground
when the mouse is not pressed, and a force that pushes it upwards

against gravity when the mouse is pressed.

class Bird

{

bird.js

constructor()

{
this

this.

this
this
this

AI module C unit #4

IX

y:

50
120

.velocity = 0

.gravity = 0.5

.force = -10

10 of 91

www.elegantAlorg

http://www.elegantAI.org

Defining and initialising all the variables we need.

X Code Explanation

this.x = 50 Fixed distance from the lefthand edge
this.y = 120 Starting vertical position
this.velocity = 0 Starting velocity

this.gravity = 0.5 Arbitrary gravity value acting downwards

Flap force acting upwards when mouse clicked, hence

this.force = -10 .
negative value

AI module C unit #4 11 of 91 www.elegantAlorg

http://www.elegantAI.org

& Sketch C4.3 gravity

When the bird flaps its wings (metaphorically speaking), the force (a
form of acceleration) is added to the vertical velocity. Gravity is
acting on the bird all the time (another acceleration), and the resultant
velocity is added to the y component of its position. And to give some
realism(!), we add some damping (0. 95). Also, when it lands on the floor, it
just stays there. The bird is represented by a circle. We will now have our
usual functions move() and show() plus another one called flap()

which is the equivalent to the applyForce() previously.

bird.js

class Bird

{

constructor()

{

this.
this.
this.
this.

this

flap()

this.

move ()

{

this.

this
this

X = 50
y = 120
velocity = 0
gravity = 0.5

.force = -10

velocity += this.force

velocity += this.gravity
.y += this.velocity

.velocity *= 0.95

AI module C unit #4 12 of 91

www.elegantAl.org

http://www.elegantAI.org

if (this.y > height)
{
this.y = height
this.velocity = @

show()
{
stroke(0)
noFill()
circle(this.x, this.y, 20)

At this point, we are just creating the game and doing it quickly. We want
to focus on the main event, which is the neuroevolution part. For now, just
take the time to understand the code without there being foo much
explanation at this point from me.

X Code Explanation

This is the upward force (negative 10) when

this.velocity += this.force the bird flaps ifs wings

this.velocity += this.gravity Adding gravity to the velocity

this.y += this.velocity Adding the velocity to the vertical position
this.velocity *= 0.95 Adding a bit of simulation

if (this.y > height) Checks to see if it has hit the floor
this.y = height Stays on the floor

Reduce the velocity to zero on the floor

this.velocity = 0 until it flaps

AT module C unit #4 13 of 91 www.elegantAlorg

http://www.elegantAI.org

i: Sketch C4.4 pipes

I Go to the pipes.js file.
Now, to add the pipes, we have two pipes, one at the top and one at the
bottom. We have a constructor() function for the pipes, which will
have a vertical space between the pipes (100), a random top position for a
pipe, and a corresponding bottom position for a pipe. Each pipe will be 20

wide, and the velocity of the pipes has the value of 2.

pipes.js

class Pipe
{
constructor()
{
this.spacing = 100
this.top = random(height - this.spacing)
this.bottom = this.top + this.spacing
this.x = width
this.w = 20
this.velocity = 2

AI module C unit #4

14 of 91

www.elegantAlorg

http://www.elegantAI.org

This just sets the variables for the simple pipes.

X Code Explanation

This is the gap between the top and bottom pipe

this.spacing = 100 and is what flappy bird is going fo fly through

this.top = random(height - The position of the top pipe, at some random

this.spacing) position

this.bottom = this.top + The bottom pipe is relevant to the top pipe plus
this.spacing the gap (spacing)

this.x = width The pipe starts at the far righthand edge
this.w = 20 The width of the pipe

this.velocity = 2 The velocity of the pipe moving

AI module C unit #4 15 of 91 www.elegantAlorg

http://www.elegantAI.org

Sketch C4.5 drawing the pipes

We will draw the pipes as simple rectangles. Remember, we arent trying to
recreate all the full features of the game, just the minimum. The
velocity for the pipes is not the same as the velocity for the bird going
up and down. We add the show() and move() functions.

pipes.js
class Pipe
{
constructor()
{
this.spacing = 100
this.top = random(height - this.spacing)
this.bottom = this.top + this.spacing
this.x = width
this.w = 20
this.velocity = 2

show()

{
fill(51)
noStroke()
rect(this.x, @0, this.w, this.top)
rect(this.x, this.bottom, this.w, height - this.bottom)

move ()

{

this.x —= this.velocity

¥

AT module C unit #4 16 of 91 www.elegantAlorg

http://www.elegantAI.org

We wont see the bird or the pipes just yet; we will need to add these
functions to the main sketch.

X Code Explanation

rect(this.x, @, this.w,

this.top) Top pipe rectangle

rect(this.x, this.bottom,

this.w, height — this.bottom) Boffom pipe rectangle

Moves the pipes from right to left hence

this.x -= this.velocity the negative increment

AI module C unit #4 17 of 91 www.elegantAlorg

http://www.elegantAI.org

% Sketch C4.6 collision

We need to know when the bird collides with the pipes. We will put this
collision in the pipe.js class. vColl means vertical collision and logically
hColl means horizontal collision. If you think through where the bird (as
a single point (x, y)) is in relation to the pipes, you can understand the
collision part. The argument (bird) will be the position of that one
particular bird, as there will be many of them at the start.

pipes.js
class Pipe
{
constructor()
{
this.spacing = 100
this.top = random(height - this.spacing)
this.bottom = this.top + this.spacing
this.x = width
this.w = 20
this.velocity = 2

show()

{
fill(51)
noStroke()
rect(this.x, this.w, this.top)
rect(this.x, this.bottom, this.w, height - this.bottom)

move ()

{

this.x —= this.velocity

AT module C unit #4 18 of 91 www.elegantAlorg

http://www.elegantAI.org

collides(bird)
{
let vColl = bird.y < this.top || bird.y > this.bottom
let hColl = bird.x > this.x && bird.x < this.x + this.w
return vColl && hColl
}
}
", Notes

You will realise that nothing happens when you try to run this because we
havent put anything in draw() just yet. So, let's get something happening
on the canvas, lets make a playable, if rudimentary, Flappy Bird.

X Code Explanation

vColl = bird.y < this.top || Checks fo see if either one of these two
bird.y > this.bottom condition as are true

hColl = bird.x > this.x && Checks to see if both conditions are true
bird.x < this.x + this.w at the same time

return vColl && hColl Returns true or false

AT module C unit #4 19 of 91 www.elegantAlorg

http://www.elegantAI.org

& Sketch C4.7 drawing the bird!

I Return to sketch.js.

We need to create the bird, which will be a simple circle, and lots of pipes
moving across the canvas. Each bird will be a separate bird, whereas we
will have an array to keep track of the pipes.

sketch.js
let bird
let pipes = []

function setup()

{
createCanvas (600, 200)
bird = new Bird()

pipes.push(new Pipe())

function draw()

{

background(220)
¥
. Notes

Nowt (northern for nothing) to see yet.

K Code Explanation

let bird Our bird variable

let pipes = [] An empty array of pipes

bird = new Bird() Create a new bird
pipes.push(new Pipe()) Adding new pipes to the array

AT module C unit #4 20 of 91 www.elegantAlorg

http://www.elegantAI.org

' Sketch C4.8 mouse pressed

To make the bird fly, we click the mouse (usually, we press the space bar).

let bird
let pipes = []

function setup()

{
createCanvas (600, 200)
bird = new Bird()

pipes.push(new Pipe())

function mousePressed()

{
bird.flap()

function draw()

{
background(220)

Still nothing to see yet.

X Code Explanation

function mousePressed()
bird.flap()

AI module C unit #4

sketch.js

Checks to see if mouse is clicked (pressed)

Calls the flap() function in Bird class

21 of 91

www.elegantAl.org

http://www.elegantAI.org

- Sketch C4.9 oops

Now, to draw the pipes and the bird, we will have to say o0ps when we
hit the pipe and remember to press the mouse to fly/jump. We draw a
pipe every 100 frames using modulo (%) and by counting the number of
frames.

sketch.js
let bird
let pipes = []

function setup()

{
createCanvas (600, 200)
bird = new Bird()

pipes.push(new Pipe())

function mousePressed()

{
bird.flap()

function draw()
{
background(220)
for (let i = pipes.length - 1; i >= 0; i—)
{
pipes[i].show()
pipes[i].move()
if (pipes[il.collides(bird))
{
text("00PS", 50, height/2)

AT module C unit #4 22 of 91 www.elegantAlorg

http://www.elegantAI.org

b
bird.move()
bird.show()
if (frameCount % 100 === 0)
{
pipes.push(new Pipe())

If you click the mouse (or mousepad), the bird (circle) should move
upwards, and when it hits a pipe, you get an 00ps on the canvas. The
for() loop for the pipes works backwards so that it encounters the next
pipe in the array, which is being added to constantly. The array will just
keep on growing, something we will address later on. Th frame rate is how
often the screen refreshes; it is a continuous number.

X Code Explanation
for (let i = pipes.length - 1; i This has the effect of always being then

>= 0; i—-) next pipe approaching the bird
pipes[i].show() Draws each set of pipes created
pipes[i].move() Moves that pipe

Checks to see if the collision conditions

if (pipes[il.collides(bird)) have been met

text ("0O0PS", 50, height/2) If it has then text oops on canvas

The % gives you the remainder, so if it is

if (frameCount % 100 === 0) exactly divisible by a hundred then. . .

pipes.push(new Pipe()) .. .make a new pipe

AT module C unit #4 23 of 91 www.elegantAlorg

http://www.elegantAI.org

Figure C4.9

° . Auto-refresh ml5js # by TheHappyCoder

> sketch.js Saved: 1 minute ago Preview
17v{
18 background(220)

19 for (let i = pipes.length - 1; i >= 0; i--

)
207 { O
21 pipes[i].show()
22 pipes[i].move()
23 if (pipes[i].collides(bird))
24 {
25 text("00PS", 50, height/2)
26 3
27 3

28 bird.move()
29 bird.show()

Hello, TheHappyCoder! v

30 if (frameCount % 100 === @)
31 {
32 pipes.push(new Pipe())
33 3
Console Clear Vv
AI module C unit #4 24 of 91 www.elegantAl.org

http://www.elegantAI.org

‘& Sketch C4.10 culling the array

We have a slight problem. When the pipes go off the edge of the canvas,
they need to be removed; otherwise, the array will just get bigger and
bigger. Eventually, over time, the game will slow down. We use splice()
to remove them from the array.

sketch.js
let bird
let pipes = []

function setup()

{
createCanvas (600, 200)
bird = new Bird()

pipes.push(new Pipe())

function mousePressed()

{
bird.flap()

function draw()
{
background(220)
for (let i = pipes.length - 1; i >= 0; i—)
{
pipes[i].show()
pipes[i].move()
if (pipes[il.collides(bird))
{
text("00PS", 50, height/2)

AT module C unit #4 25 of 91 www.elegantAlorg

http://www.elegantAI.org

I
if (pipesl[i].offscreen())
{

pipes.splice(i, 1)

¥

bird.move()
bird.show()
if (frameCount % 100 === 0)
{
pipes.push(new Pipe())

You will get an error because we havent created the offscreen()
function in pipe.js yet.

X Code Explanation

for (let i = pipes.length - 1; i Cycles backwards through the array of
>= 0; i-—-) pipes

Checks fo see if the pipe has gone off

if (pipes[i].offscreen()) the canvas

pipes.splice(i, 1) It it has remove that pipe

AI module C unit #4 26 of 91 www.elegantAlorg

http://www.elegantAI.org

¢k Sketch C4.11 splice the pipe

! Wander over to pipes.js.

The pipe is removed from the array if the X value of that pipe (this.Xx) is
less than =20 (the width of the pipe); in other words, it has fully gone off
the edge of the canvas. Here we add the offscreen() function.

pipes.js
class Pipe
{
constructor()
{
this.spacing = 100
this.top = random(height - this.spacing)
this.bottom = this.top + this.spacing
this.x = width
this.w = 20
this.velocity = 2

show()

{
fill(51)
noStroke()
rect(this.x, 0, this.w, this.top)
rect(this.x, this.bottom, this.w, height - this.bottom)

move ()

{

this.x —= this.velocity

AI module C unit #4 27 of 91 www.elegantAlorg

http://www.elegantAI.org

collides(bird)

{
let vColl = bird.y < this.top || bird.y > this.bottom
let hColl = bird.x > this.x && bird.x < this.x + this.w
return vColl && hColl

¥

offscreen()

{

return this.x < —-this.w

It should work perfectly now. This is all fo do with managing its memory.
Your browser only has so much memory, and clogging it up like this is not
great and may crash or grind to a halt eventually.

X Code Explanation

return this.x < —-this.w Checks to see if this condition is true

AI module C unit #4 28 of 91 www.elegantAl.org

http://www.elegantAI.org

¢ Adding the brain

All we have done so far is make a simplified functional version of the
game. We are now going to develop the idea of a genetic algorithmic
approach to getting the bird to fly through the pipes perfectly without
hardcoding it, but instead using a neuroevolution technique.

This is very similar to the smart cars, so it isnt completely new for you
(assuming you completed that unit). Just make sure you have the ml5.js
installed in the index.html file. I will still walk you through it just in case
you havent or have forgotten.

AT module C unit #4 29 of 91 www.elegantAlorg

http://www.elegantAI.org

& Sketch C4.12 simple bird brain

1 Gotobird.js.

We are going to give the bird a brain as an ml5.js neural network. We
place this brain in the constructor() part of the class. When you run
this, you should still get the same, but check for any error messages in
the console to make sure you have typed everything in OK.

bird.js
class Bird
{
constructor()
{
ml5.setBackend("webgl")

this.brain = ml5.neuralNetwork(

{
inputs: 4,
outputs: ["flap", "no flap"l,
task: "classification",
noTraining: true,
neuroEvolution: true

)

this.x = 50

this.y = 120

this.velocity = @
this.gravity = 0.5

this.force = -10

flap()
{

this.velocity += this.force

AT module C unit #4 30 of 91 www.elegantAlorg

http://www.elegantAI.org

move ()

{

this.velocity += this.gravity

this.y += this.velocity
this.velocity *= 0.95
if (this.y > height)
{
this.y = height
this.velocity = 0@

¥
show()
{
stroke(0)
noFill()
circle(this.x, this.y, 20)

We havent connected the bird and

brain!

K Code Explanation
inputs: 4

outputs: ["flap", "no flap"]
task: "classification"
noTraining: true

neuroEvolution: true

AI module C unit #4

There are four inputs
Our two outputs
Task declared

Not doing any training

brain together yet; the bird has no

Declaring it is a neuro evolution network

31 of 91

www.elegantAl.org

http://www.elegantAI.org

Sketch C4.13 next pipe please

This is where we need to think a bit about what is happening. Once the
pipe has gone past the bird, it is no longer relevant. We already delete it
when it goes off the canvas. But we need a way of checking the distance
to the next one in front of the bird, not just the one at the front of the
array. So in bird.js, we need a function to measure that. The break
command simply ferminates that checking loop. The new function
think(pipes) has the argument from the array of pipes.

bird.js
class Bird
{
constructor()
{
ml5.setBackend("webgl")
this.brain = ml5.neuralNetwork(
{
inputs: 4,
outputs: ["flap", "no flap"],
task: "classification",
noTraining: true,

neuroEvolution: true

)
this.x = 50
this.y = 120

this.velocity = @
this.gravity = 0.5

this.force = -10

think(pipes)
{

AT module C unit #4 32 of 91 www.elegantAlorg

http://www.elegantAI.org

let nextPipe = null
for (let pipe of pipes)

{
if (pipe.x + pipe.w > this.x)
{
nextPipe = pipe
break
b
+
¥
flap()
{

this.velocity += this.force

move ()

{
this.velocity += this.gravity
this.y += this.velocity
this.velocity x= 0.95
if (this.y > height)

{
this.y = height
this.velocity = @
s
}
show()
{
stroke(0)
noFill()

circle(this.x, this.y, 20)

AI module C unit #4 33 of 91

www.elegantAl.org

http://www.elegantAI.org

Just check each pipe in turn.

K Code Explanation
nextPipe = null The term null means empty or no value

for (let pipe of pipes) Goes through the array of pipes pulling out a pipe

at a time
nextPipe = pipe The nextPipe now has a value
break Stops the loop

AI module C unit #4 34 of 91 www.elegantAlorg

http://www.elegantAI.org

'k Sketch C4.14 input data

Now we have the next pipe, we can add it to the data inputs for our

neural network. These are our four inputs.

bird.js
class Bird

{
constructor()
{
ml5.setBackend("webgl")
this.brain = ml5.neuralNetwork(
{
inputs: 4,
outputs: ["flap", "no flap"],
task: "classification",
noTraining: true,

neuroEvolution: true

)
this.x = 50
this.y = 120

this.velocity = @
this.gravity = 0.5

this.force = -10

think(pipes)

{
let nextPipe = null
for (let pipe of pipes)
{

if (pipe.x + pipe.w > this.x)

AI module C unit #4 35 of 91

www.elegantAl.org

http://www.elegantAI.org

nextPipe = pipe

break

s

let inputs = [
this.y,
this.velocity,
nextPipe.top,

nextPipe.x — this.x

¥
flap()
{
this.velocity += this.force
b
move ()
{
this.velocity += this.gravity
this.y += this.velocity
this.velocity *x= 0.95
if (this.y > height)
{
this.y = height
this.velocity = @
I
b
show()
{

AI module C unit #4 36 of 91 www.elegantAlorg

http://www.elegantAI.org

stroke(0)
noFill()
circle(this.x, this.y, 20)

We now have our four inputs, and the nextPipe will be the pipe it
sees.

K Code Explanation

this.y Input 1: the vertical position
this.velocity Input 2: the current velocity of the bird
nextPipe.top Input 3: the vertical position of the top pipe
nextPipe.x - this.x Input 4: how far away is the next pipe

AI module C unit #4 37 of 91 www.elegantAlorg

http://www.elegantAI.org

o¥ Sketch C4.15 normalise

To normalise all the inputs, we can divide any vertical measurements
by the height, which are the first three inputs. The fourth input is the
horizontal distance, so one is divided by the width. This gives us values
between 0 and 1.

bird.js
class Bird

{

constructor()

{
ml5.setBackend("webgl")

this.brain = ml5.neuralNetwork(

{
inputs: 4,
outputs: ["flap", "no flap"],
task: "classification",
noTraining: true,
neuroEvolution: true

})

this.x = 50

this.y = 120

this.velocity = @
this.gravity = 0.5

this.force = -10

think(pipes)

{
let nextPipe = null
for (let pipe of pipes)
{

AI module C unit #4 38 of 91 www.elegantAlorg

http://www.elegantAI.org

if (pipe.x + pipe.w > this.x)
{
nextPipe = pipe

break

Iy

let inputs = [
this.y / height,
this.velocity / height,
nextPipe.top / height,
(nextPipe.x - this.x) / width

flap()

this.velocity += this.force

move ()

{
this.velocity += this.gravity
this.y += this.velocity
this.velocity *x= 0.95
if (this.y > height)

{
this.y = height
this.velocity = @
s
}
show()

AI module C unit #4 39 of 91 www.elegantAlorg

http://www.elegantAI.org

stroke(0)
noFill()
circle(this.x, this.y, 20)
b
b
", Notes

Everything is now normalised.

AI module C unit #4 40 of 91 www.elegantAl.org

http://www.elegantAI.org

°k Sketch C4.16 synchronicity

We want the code to run synchronously so that the model waits for
the inputs before carrying on. We use something a bit useful in ml5.js
called classifySync(), which is the same as classify but runs
synchronously. If the result is classified as flap, then the function flap()
is run; otherwise, nothing will happen.

bird.js
class Bird
{
constructor()
{
ml5.setBackend("webgl")

this.brain = ml5.neuralNetwork(

{
inputs: 4,
outputs: ["flap", "no flap"],
task: "classification",
noTraining: true,
neuroEvolution: true

})

this.x = 50

this.y = 120

this.velocity = @
this.gravity = 0.5

this.force = -10

think(pipes)

{
let nextPipe = null
for (let pipe of pipes)

AI module C unit #4 41 of 91 www.elegantAlorg

http://www.elegantAI.org

if (pipe.x + pipe.w > this.x)
{
nextPipe = pipe

break

I
let inputs = [
this.y / height,
this.velocity / height,
nextPipe.top / height,
(nextPipe.x - this.x) / width
]
let results = this.brain.classifySync(inputs)
if (results[@].label === "flap")
{
this.flap()

flap()

this.velocity += this.force

move ()

{
this.velocity += this.gravity
this.y += this.velocity
this.velocity *x= 0.95
if (this.y > height)
{

AI module C unit #4 42 of 91 www.elegantAlorg

http://www.elegantAI.org

this.y = height
this.velocity = 0@

show()
{
stroke(0)
noFill()
circle(this.x, this.y, 20)

Do remember that there is no training; each bird has a different set of
random weights. The outputs will be effectively random despite having the
data inputs; it has no idea it has to jump or even why it should jump; it
does not even know the rules of the game.

X Code Explanation

results = From the input data we classify the
this.brain.classifySync(inputs) output (results)

if (results[0].label === "flap") If the first result is flap then. ..
this.flap() .. .flap like a bird

AT module C unit #4 43 of 91 www.elegantAlorg

http://www.elegantAI.org

& Skeftch C4.17 population of birds

I Return to sketch.js.

We only currently have one bird. We need a population of birds all trying
to be the best bird they can be. We will make an array of 200 new birds.
We need an array of birds, and so we use a for() loop to create this
population of birds.

sketch.js
let birds
let pipes

[]
[]
let population = 200

function setup()

{
createCanvas (600, 200)

for (let i = 0; i < population; i++)

{

birds[i] = new Bird()
¥
pipes.push(new Pipe())

function mousePressed()

{
bird.flap()

function draw()

{
background(220)
for (let i = pipes.length - 1; i >= 0; i—-)

AT module C unit #4 44 of 91 www.elegantAlorg

http://www.elegantAI.org

pipes[i].show()
pipes[i].move()
if (pipes[il.collides(bird))
{

text("00PS", 50, height/2)
}
if (pipesl[i].offscreen())
{

pipes.splice(i, 1)

b
bird.move()
bird.show()
if (frameCount % 100 === 0)
{
pipes.push(new Pipe())

No point in running it yet; we have a few more amendments to make.

X Code Explanation
let birds = []

for (let i = 0; i < population;
i++)

birds[i] = new Bird()

An empty array of birds replaces singular
bird

Creating a population of birds

Adding the birds to the array

AI module C unit #4 45 of 91 www.elegantAlorg

http://www.elegantAI.org

<& Sketch C4.18 to flap or not to flap

We are now going to get the bird to think whether it should flap or not,
update its decision, and then show us what it can do. However, it is sftill foo
early to run this just yet; we are still laying the foundation. Put
bird.move() and bird.show() inside a new for-of() loop and call

the think(pipes) function.

sketch.js
let birds
let pipes

[]
[]
let population = 200

function setup()

{
createCanvas (600, 200)
for (let i = 0; i < population; i++)
{

birds[il

¥
pipes.push(new Pipe())

new Bird()

function mousePressed()

{
bird. flap()

function draw()

{
background(220)
for (let i = pipes.length - 1; i >= 0; i—)
{

AI module C unit #4 46 of 91

www.elegantAlorg

http://www.elegantAI.org

pipes[i].show()
pipes[i] .move()
if (pipes[il.collides(bird))
{
text("00PS", 50, height/2)
+
if (pipesl[il.offscreen())
{

pipes.splice(i, 1)

}
for (let bird of birds)

{
bird.think(pipes)
bird.move()
bird.show()
b
if (frameCount % 100 === 0)
{
pipes.push(new Pipe())

We cycle through all the birds one at a time.

AI module C unit #4 47 of 91 www.elegantAlorg

http://www.elegantAI.org

% Sketch C4.19 GPU v CPU

We can use the GPU or the CPU. I wont go info the difference here
except to say that we want to use the CPU for better performance. The
GPU is better when there is a heavy demand for graphics in some games,
for instance. The .tf reference is for TensorFlow, which underpins ml5.js.
TensorFlow is used with Python for machine learning, but there is a
JavaScript version called TensorFlow.js, which is compatible with ml5.js and
p5.Jjs.

I If it is still running slow or very jerky, then suggest reducing the
number of birds, or try webgl.

sketch.js
let birds
let pipes

[]
[]
let population = 200

function setup()
{
createCanvas (600, 200)
for (let 1 = 0; i < population; i++)
{
birds[i] = new Bird()
¥
pipes.push(new Pipe())
ml5.tf.setBackend("cpu")

function mousePressed()

{
bird.flap()

AT module C unit #4 48 of 91 www.elegantAlorg

http://www.elegantAI.org

function draw()
{
background(220)
for (let i = pipes.length - 1; i >= 0; i—)
{
pipes[i].show()
pipes[i].move()
if (pipes[i].collides(bird))
{
text("O0PS", 50, height/2)
+
if (pipesl[i].offscreen())

{

pipes.splice(i, 1)

¥
for (let bird of birds)
{
bird.think(pipes)
bird.move()
bird.show()
¥
if (frameCount % 100 === 0)
{
pipes.push(new Pipe())

I found that this did make quite a difference depending on what device/
machine I used. The other alternative might be webgl. Play around and
see what works best for you.

AI module C unit #4 49 of 91 www.elegantAlorg

http://www.elegantAI.org

% Sketch C4.20 bird fitness

! Hop over to bird.js.

Next job is to define and find the fitness of each bird. We need to add
two more features, fitness and alive, in the constructor()
function. The birds fitness obviously increases the longer it is alive;
hence, fitness is a number, but alive is a boolean; it is either alive or
not, think of oops being a bit more terminal. We increment the fitness
in the move () function.

bird.js
class Bird
{
constructor()
{
ml5.setBackend("webgl")

this.brain = ml5.neuralNetwork(

{
inputs: 4,
outputs: ["flap", "no flap"I,
task: "classification",
noTraining: true,
neuroEvolution: true

})

this.x = 50

this.y = 120

this.velocity = @
this.gravity = 0.5
this.force = -10
this.fitness = 0

this.alive = true

AI module C unit #4 50 of 91 www.elegantAlorg

http://www.elegantAI.org

think(pipes)

{
let nextPipe = null
for (let pipe of pipes)

{
if (pipe.x + pipe.w > this.x)
{
nextPipe = pipe
break
I
I

let inputs = [
this.y / height,
this.velocity / height,
nextPipe.top / height,
(nextPipe.x — this.x) / width
]
let results = this.brain.classifySync(inputs)
if (results[0].label === "flap")
{
this.flap()

flap()
{

this.velocity += this.force

move ()

{

this.velocity += this.gravity

AI module C unit #4 51 of 91 www.elegantAlorg

http://www.elegantAI.org

this.y += this.velocity
this.velocity *x= 0.95
if (this.y > height)
{
this.y = height
this.velocity = @
¥

this.fitness++

show()
{
stroke(0)
noFill()
circle(this.x, this.y, 20)

When the bird hits the pipe, we will want to eliminate it, remove it (sounds
less brutal).

K Code Explanation

this.fitness = 0 Each bird has a fithess of zero
this.alive = true Each bird is initialised as being alive at the start
this.fitness++ Increment the birds fitness on each iteration.

AI module C unit #4 52 of 91 www.elegantAlorg

http://www.elegantAI.org

-3 Sketch C4.21 the bird is dead

I Return to sketch.js.

However, we need a dead bird (sorry) when it hits a pipe. So, we have to
do a bit of refactoring fo incorporate this here and also in the next sketch.
We have a nested loop to achieve this.

sketch.js
let birds

[]
[]
let population = 200

let pipes

function setup()

{
createCanvas (600, 200)
for (let 1 = 0; i < population; i++)
{

birds[i] = new Bird()

}
pipes.push(new Pipe())
ml5.tf.setBackend("cpu")

function mousePressed()

{
bird.flap()

function draw()

{
background(220)
for (let i = pipes.length - 1; i >= 0; i—)

AT module C unit #4 53 of 91 www.elegantAlorg

http://www.elegantAI.org

pipes[i].show()
pipes[i].move()
if (pipes[il.collides(bird))
{

text("00PS", 50, height/2)
}
if (pipesl[i].offscreen())
{

pipes.splice(i, 1)

b
for (let bird of birds)
{
if (bird.alive)
{
bird.think(pipes)
bird.move()
bird.show()

}
if (frameCount % 100 === 0)
{

pipes.push(new Pipe())

The only birds left are those which are alive (true), obviously.

K Code Explanation

if (bird.alive) Checks to see if this bird is alive (true) or dead (false)

AT module C unit #4 54 of 91 www.elegantAlorg

http://www.elegantAI.org

Sketch C4.22 collision

Now, when the bird collides with the pipe. We do a bit more reconfiguring.
Also, we remove the lines of code which are commented out (//). We are
no longer operating the birds with the mouse. We eliminate the birds if
they collide with the pipe.

sketch.js
let birds
let pipes

[]
[]
let population = 200

function setup()

{
createCanvas (600, 200)
for (let i = 0; i < population; i++)
{

birds[il

¥
pipes.push(new Pipe())
ml5.tf.setBackend("cpu")

new Bird()

// function mousePressed()

// A
// bird.flap()

// }

function draw()

{
background(220)
for (let i = pipes.length - 1; i >= 0; i—-)
{

AT module C unit #4 55 of 91 www.elegantAlorg

http://www.elegantAI.org

pipes[i].show()

pipes[i] .move()

// if (pipes[i].collides(bird))
/7 1

// text("00PS", 50, height/2)
// }

if (pipesl[il.offscreen())

{

pipes.splice(i, 1)

}
for (let bird of birds)

{
if (bird.alive)
{
for (let pipe of pipes)
{
if (pipe.collides(bird))

{

bird.alive = false

}
bird.think(pipes)
bird.move()
bird.show()

}
if (frameCount % 100 === 0)
{

pipes.push(new Pipe())

}

AI module C unit #4 56 of 91

www.elegantAl.org

http://www.elegantAI.org

We now have a working population of birds trying to get through the
pipes; however, they only last for one population, and once they have all
died, there are none more. We want to reproduce the next generation.

X Code Explanation
for (let pipe of pipes) Goes through each pipe in turn

if (pipe.collides(bird)) Checks for any collisions

bird.alive = false If a collision occurs that bird is now dead (false)

AI module C unit #4 57 of 91 www.elegantAlorg

http://www.elegantAI.org

Figure C4.22

Hello, TheHappyCoder! v

° . Auto-refresh mlSjs # by TheHappyCoder c
> sketch.js Saved: 3 minutes ago Preview

2, 18

30 if (bird.alive)

31 { S

32 for (let pipe of pipes))

33 { O

34 if (pipe.collides(bird)) 8

35 {

36 bird.alive = false

37 3 N — -
38 3

39 bird.think(pipes)

40 bird.move()

41 bird.show()

42 3

43 }

44 if (frameCount % 100 === Q)

45y {

46 pipes.push(new Pipe())

47 Y

Console Clear WV

AI module C unit #4 58 of 91 www.elegantAl.org

http://www.elegantAI.org

- Sketch C4.23 is anyone there

There is no predetermined lifespan. So they live as long as they dont hit a
pipe, and when they have all died outf, then we select the best ones. We
create a function to check if there are any birds left; if there are still
some birds flapping, it returns false and carries on checking.

sketch.js
let birds
let pipes

[]
[]
let population = 200

function setup()

{
createCanvas (600, 200)
for (let i = 0; i < population; i++)
{

birds[il

¥
pipes.push(new Pipe())
ml5.tf.setBackend("cpu")

new Bird()

function draw()

{
background(220)
for (let i = pipes.length - 1; i >= 0; i—)
{

pipes[i].show()
pipes[i].move()
if (pipesl[il.offscreen())
{

pipes.splice(i, 1)

AT module C unit #4 59 of 91 www.elegantAlorg

http://www.elegantAI.org

}
for (let bird of birds)

{
if (bird.alive)
{
for (let pipe of pipes)
{
if (pipe.collides(bird))
{

bird.alive = false

}
bird.think(pipes)
bird.move()
bird.show()

}
if (frameCount % 100 === 0)
{

pipes.push(new Pipe())

function allBirdsDead()

{
for (let bird of birds)

{
if (bird.alive)
{

return false

}

AI module C unit #4 60 of 91

www.elegantAlorg

http://www.elegantAI.org

by

return true

Hit

, Notes
Not an imaginative name for a function, but it does what it says on the ftin!

X Code Explanation

for (let bird of birds) Check through all the birds
if (bird.alive) If a there is an alive bird then. . .
return false . . .the function allBirdsDead() is false, until. . .
return true . . .there are no alive birds
AI module C unit #4 61 of 91

www.elegantAlorg

http://www.elegantAI.org

& Sketch C4.24 mating the best ones

What we want to do now is select the fittest birds and mate them to make
even better birds for the next round. This is an evolutionary approach to
selection. We will use the weightedSelection() algorithm that we
used in smart cars. To remind you, the fittest have the advantage, but the
others always have a chance, so it is a bit more like how natural selection
occurs.

sketch.js
let birds
let pipes

[]
[]
let population = 200

function setup()
{
createCanvas (600, 200)
for (let i = 0; i < population; i++)
{
birds[i] = new Bird()
¥
pipes.push(new Pipe())
ml5.tf.setBackend("cpu")

function draw()

{
background(220)
for (let i = pipes.length - 1; i >= 0; i—)
{

pipes[i].show()
pipes[i].move()

if (pipesl[il.offscreen())

AT module C unit #4 62 of 91 www.elegantAlorg

http://www.elegantAI.org

pipes.splice(i, 1)

}
for (let bird of birds)

{
if (bird.alive)
{
for (let pipe of pipes)
{
if (pipe.collides(bird))
{

bird.alive = false

}
bird.think(pipes)
bird.move()
bird.show()

b
if (frameCount % 100 === 0)
{

pipes.push(new Pipe())

function allBirdsDead()

{
for (let bird of birds)

{
if (bird.alive)

{

AI module C unit #4 63 of 91

www.elegantAlorg

http://www.elegantAI.org

return false

}

return true

function weightedSelection()

{

let index = 0

let start = random(1)

while (start > 0)

{
start = start - birds[index].fitness
index++

b

index—-—

return birds[index].brain

R

~ Notes

We continue to put the pieces together; we still have to normalise the
fitness values. We went through the code for weighted selection in some
detail in smart cars.

AT module C unit #4 64 of 91 www.elegantAlorg

http://www.elegantAI.org

& Sketch C4.25 normalising fitness

Now, to normalise the fitness, we use the for—of() loop to add up all
the fitness scores of all the birds (sum) and then go through each one and
divide by said sum. This means that we have fithess scores between 0 and
1, and they all add up to 1.

sketch.js
let birds

[]
[]
let population = 200

let pipes

function setup()

{
createCanvas (600, 200)
for (let i = 0; i < population; i++)
{

birds[il

¥
pipes.push(new Pipe())
ml5.tf.setBackend("cpu")

new Bird()

function draw()

{
background(220)
for (let i = pipes.length - 1; i >= 0; i—)
{

pipes[i].show()
pipes[i].move()
if (pipesl[il.offscreen())
{

pipes.splice(i, 1)

AT module C unit #4 65 of 91 www.elegantAlorg

http://www.elegantAI.org

}
for (let bird of birds)

{
if (bird.alive)
{
for (let pipe of pipes)
{
if (pipe.collides(bird))
{

bird.alive = false

}
bird.think(pipes)
bird.move()
bird.show()

}
if (frameCount % 100 === 0)
{

pipes.push(new Pipe())

function allBirdsDead()

{
for (let bird of birds)

{
if (bird.alive)
{

return false

by

AI module C unit #4 66 of 91

www.elegantAlorg

http://www.elegantAI.org

by

return true

function weightedSelection()

{

let index = 0

let start = random(1)

while (start > 0)

{
start = start - birds[index].fitness
index++

¥

index——

return birds[index].brain

function normaliseFitness()

{

let sum = 0
for (let bird of birds)
{

sum += bird.fitness

}
for (let bird of birds)

{

bird.fitness = bird.fitness / sum

AT module C unit #4 67 of 91 www.elegantAlorg

http://www.elegantAI.org

Hit

, Notes

This should be fairly straightforward. Another piece of the jigsaw. The
code was covered in smart cars.

AI module C unit #4 68 of 91 www.elegantAl.org

http://www.elegantAI.org

¥ Sketch C4.26 crossover

Now we tfackle crossover, where we combine the DNA or genes of two
parents that are successful or have a high fitness level. This could be
very problematic because all you are doing is choosing the weights of one
neural network or the other. What ml5.js has is a built-in function for this
called crossover(), and we create a reproduction() function to
calculate all this.

sketch.js
let birds
let pipes

[]
[]
let population = 200

function setup()

{
createCanvas (600, 200)
for (let i = 0; i < population; i++)
{

birds[il

¥
pipes.push(new Pipe())
ml5.tf.setBackend("cpu")

new Bird()

function draw()

{
background(220)
for (let i = pipes.length - 1; i >= 0; i—)
{

pipes[i] .move()
pipes[i].show()

// pipes[i].move()

AI module C unit #4 69 of 91 www.elegantAlorg

http://www.elegantAI.org

if (pipesl[il.offscreen())
{

pipes.splice(i, 1)

}
for (let bird of birds)

{
if (bird.alive)
{
for (let pipe of pipes)
{
if (pipe.collides(bird))
{

bird.alive = false

}
bird.think(pipes)
bird.move()
bird.show()

}
if (frameCount % 100 === 0)
{

pipes.push(new Pipe())

function allBirdsDead()

{
for (let bird of birds)

{

if (bird.alive)

AI module C unit #4 70 of 91

www.elegantAlorg

http://www.elegantAI.org

return false

by

return true

function weightedSelection()

{

let index = 0

let start = random(1)

while (start > 0)

{
start = start - birds[index].fitness
index++

¥

index——

return birds[index].brain

function normaliseFitness()

{

let sum = 0
for (let bird of birds)
{

sum += bird.fitness

}
for (let bird of birds)

{

bird.fitness = bird.fitness / sum

}

AI module C unit #4 71 of 91 www.elegantAlorg

http://www.elegantAI.org

function reproduction()

{
let parentA

weightedSelection()

let parentB = weightedSelection()

let child = parentA.crossover(parentB)

Hithb

, Notes

You can see how the crossover() function works.

AI module C unit #4 72 of 91

www.elegantAlorg

http://www.elegantAI.org

-%: Sketch C4.27 mutation

To mutate, we can use another new function included in ml5.js called
(quess what) mutate(). Mutation is important because it creates some
variety to prevent a poor initial selection from causing the birds to die out
prematurely. The number indicates how often a weight is altered. 0.01 is
1% of the population.

sketch.js
let birds
let pipes

[]
[]
let population = 200

function setup()
{
createCanvas (600, 200)
for (let i = 0; i < population; i++)
{
birds[i] = new Bird()
¥
pipes.push(new Pipe())
ml5.tf.setBackend("cpu")

function draw()

{
background(220)
for (let i = pipes.length - 1; i >= 0; i—)
{

pipes[i].move()
pipes[i].show()
// pipes[i].move()

if (pipesl[i].offscreen())

AT module C unit #4 73 of 91 www.elegantAlorg

http://www.elegantAI.org

pipes.splice(i, 1)

}
for (let bird of birds)

{
if (bird.alive)
{
for (let pipe of pipes)
{
if (pipe.collides(bird))
{

bird.alive = false

}
bird.think(pipes)
bird.move()
bird.show()

b
if (frameCount % 100 === 0)
{

pipes.push(new Pipe())

function allBirdsDead()

{
for (let bird of birds)

{
if (bird.alive)

{

AI module C unit #4 74 of 91

www.elegantAlorg

http://www.elegantAI.org

return false

}

return true

function weightedSelection()

{

let index = 0

let start = random(1)

while (start > 0)

{
start = start - birds[index].fitness
index++

b

index—-—

return birds[index].brain

function normaliseFitness()

{

let sum = 0
for (let bird of birds)
{

sum += bird.fitness

}
for (let bird of birds)

{

bird.fitness = bird.fitness / sum

AI module C unit #4 75 of 91 www.elegantAlorg

http://www.elegantAI.org

function reproduction()

{
let parentA

weightedSelection()

let parentB = weightedSelection()
let child = parentA.crossover(parentB)

child.mutate(0.01)

Hithb

, Notes
We do need some mutation.

AI module C unit #4 76 of 91

www.elegantAlorg

http://www.elegantAI.org

-k Sketch C4.28 next generation

Once we have crossover and mutation, we need a new population. So
we need a new (empty) array of birds, and we will call this nextBirds =
[1. This is part of the reproduction() function. After we have gone
through the population and created the next birds from the children, we
then call this new generation of birds the current population. This means
we are rinsing and repeating with each successive population replacing the
previous one, which we hope is better.

sketch.js

let birds
let pipes

[]
[]
let population = 200

function setup()
{
createCanvas (600, 200)
for (let i = 0; i < population; i++)
{
birds[i] = new Bird()
¥
pipes.push(new Pipe())
ml5.tf.setBackend("cpu")

function draw()

{
background(220)
for (let i = pipes.length - 1; i >= 0; i—)
{

pipes[i] .move()

pipes[i].show()

AT module C unit #4 77 of 91 www.elegantAlorg

http://www.elegantAI.org

// pipes[i].move()
if (pipesl[i].offscreen())
{

pipes.splice(i, 1)

b
for (let bird of birds)
{
if (bird.alive)
{
for (let pipe of pipes)
{
if (pipe.collides(bird))
{

bird.alive = false

}
bird.think(pipes)
bird.move()
bird.show()

}
if (frameCount % 100 === 0)
{

pipes.push(new Pipe())

function allBirdsDead()

{
for (let bird of birds)
{

AI module C unit #4 78 of 91

www.elegantAlorg

http://www.elegantAI.org

if (bird.alive)
{

return false

}

return true

function weightedSelection()

{

let index = 0

let start = random(1)

while (start > 0)

{
start = start — birds[index].fitness
index++

b

index—

return birds[index].brain

function normaliseFitness()

{

let sum = 0

for (let bird of birds)
{

sum += bird.fitness

¥

for (let bird of birds)
{

bird.fitness = bird.fitness / sum

}

AI module C unit #4 79 of 91 www.elegantAlorg

http://www.elegantAI.org

function reproduction()

{
let nextBirds = []

for (let i = 0; i < population; i++)

{
let parentA = weightedSelection()
let parentB = weightedSelection()
let child = parentA.crossover(parentB)
child.mutate(0.01)
nextBirds[i] = new Bird(child)
¥
birds = nextBirds
b
", Notes

A bit of refactoring, but a similar outcome to smart cars in the previous
unit.

AT module C unit #4 80 of 91 www.elegantAlorg

http://www.elegantAI.org

Sketch C4.29 a new brain

! Fly over to bird.js.

The new birds still have no brains, so we need to alter the Bird class to
correct this omission. If the bird has no brain, then create one; if it does
(because it is the next generation), then use it. The constructor()
function now receives an argument (brain), which is the new child brain
from the crossover.

bird.js
class Bird
{
constructor(brain)
{
if (brain)
{
this.brain = brain
I
else
{
ml5.setBackend("webgl")
this.brain = ml5.neuralNetwork(
{
inputs: 4,
outputs: ["flap", "no flap"],
task: "classification",
noTraining: true,
neuroEvolution: true
)
I
this.x = 50
this.y = 120

this.velocity = @

AT module C unit #4 81 of 91 www.elegantAlorg

http://www.elegantAI.org

this.gravity = 0.5
this.force = -10
this.fitness = 0

this.alive = true

think(pipes)

{
let nextPipe = null
for (let pipe of pipes)

{
if (pipe.x + pipe.w > this.x)
{
nextPipe = pipe
break
I
I

let inputs = [
this.y / height,
this.velocity / height,
nextPipe.top / height,
(nextPipe.x - this.x) / width
]
let results = this.brain.classifySync(inputs)
if (results[@].label === "flap")
{
this.flap()

flap()
{

AI module C unit #4 82 of 91 www.elegantAl.org

http://www.elegantAI.org

this.velocity += this.force

move ()
{
this.velocity += this.gravity
this.y += this.velocity
this.velocity x= 0.95
if (this.y > height)
{
this.y = height
this.velocity = @
¥

this.fitness++

show()
{
stroke(0)
noFill()
circle(this.x, this.y, 20)

We have a brain for every generation.

AI module C unit #4 83 of 91

www.elegantAlorg

http://www.elegantAI.org

I Return to sketch.js.

ok Sketch C4.30 reset and off we go again

Now, to complete the code to make this work. If all the birds are dead,
then we need to reset the pipes. To do that, we create a new function

called resetPipes().

sketch.js
let birds
let pipes

[]
[]
let population = 200

function setup()
{
createCanvas (600, 200)
for (let 1 = 0; i < population; i++)
{
birds[i] = new Bird()
¥
pipes.push(new Pipe())
ml5.tf.setBackend("cpu")

function draw()
{
background(220)
for (let i = pipes.length - 1; i >= 0; i—)
{
pipes[i].show()
pipes[i].move()
if (pipesl[i].offscreen())

{

AI module C unit #4 84 of 91

www.elegantAlorg

http://www.elegantAI.org

pipes.splice(i, 1)

b
for (let bird of birds)
{
if (bird.alive)
{
for (let pipe of pipes)
{
if (pipe.collides(bird))
{

bird.alive = false

}
bird.think(pipes)
bird.move()
bird.show()

¥
if (frameCount % 100 === 0)
{
pipes.push(new Pipe())
b
if (allBirdsDead())
{

normaliseFitness()
reproduction()

resetPipes()

function resetPipes()

AI module C unit #4 85 of 91 www.elegantAlorg

http://www.elegantAI.org

pipes.splice(@, pipes.length - 1)

function allBirdsDead()

{
for (let bird of birds)

{
if (bird.alive)

{

return false

by

return true

function weightedSelection()

{

let index = 0

let start = random(1)

while (start > 0)

{
start = start - birds[index].fitness
index++

¥

index——

return birds[index].brain

function normaliseFitness()

{

let sum = 0

AI module C unit #4 86 of 91 www.elegantAl.org

http://www.elegantAI.org

for (let bird of birds)
{

sum += bird.fitness

}
for (let bird of birds)

{

bird.fitness = bird.fitness / sum

function reproduction()
{
let nextBirds = []
for (let 1 = 0; i < population; i++)
{
let parentA

weightedSelection()

let parentB = weightedSelection()

let child = parentA.crossover(parentB)
child.mutate(0.01)

nextBirds[i] = new Bird(child)

}

birds = nextBirds

The reason for deleting the pipes except the last one (pipes.length -
1) is because if we don?, it will try to find the distance to the next pipe,
but there isnt one briefly. This stops us from getting an error message.

K Code Explanation

Deletes all the pipes except for the last

pipes.splice(@, pipes.length - 1) one

AI module C unit #4 87 of 91 www.elegantAlorg

http://www.elegantAI.org

¢k Sketch C4.31 eliminating silly birds

! Herein bird.js.

One final tweak: we can also eliminate any birds that fly off the screen or
hit the ground in bird. js.

bird.js
class Bird
{
constructor(brain)
{
if (brain)
{
this.brain = brain
}
else
{
ml5.setBackend("webgl")
this.brain = ml5.neuralNetwork(
{
inputs: 4,
outputs: ["flap", "no flap"],
task: "classification",
noTraining: true,
neuroEvolution: true
})
}
this.x = 50
this.y = 120

this.velocity = @
this.gravity = 0.5

this.force = -10

AI module C unit #4 88 of 91 www.elegantAl.org

http://www.elegantAI.org

this.fitness = 0

this.alive = true

think(pipes)

{
let nextPipe = null
for (let pipe of pipes)

{
if (pipe.x + pipe.w > this.x)
{
nextPipe = pipe
break
b
I

let inputs = [
this.y / height,
this.velocity / height,
nextPipe.top / height,
(nextPipe.x - this.x) / width
]
let results = this.brain.classifySync(inputs)

if (results[@].label == "flap")
{
this.flap()
I
¥
flap()
{
this.velocity += this.force
b

AI module C unit #4 89 of 91 www.elegantAlorg

http://www.elegantAI.org

move ()

{
this.velocity += this.gravity
this.y += this.velocity
this.velocity *x= 0.95
if (this.y > height || this.y < 0)
{

this.alive = false

I

this.fitness++

show()
{
stroke(0)
noFill()
circle(this.x, this.y, 20)

If you leave it running for a while, you should see the results as a single
bird (although technically not necessarily) working its way through the
maze of pipes successfully.

® Challenge

There are a lot of things you could do to improve or change this flappy
bird neuroevolution programme.

1. Build a slider to speed it up, as we did with the smart cars.

2. Add an image of the flappy bird (see Games in the resources tab).

AT module C unit #4 90 of 91 www.elegantAlorg

http://www.elegantAI.org

“X Code Explanation

If the bird has gone below the bottom
if (this.y > height || this.y < @) edge or gone above the top edge
then. . .

this.alive = false . . .the bird is dead

AI module C unit #4 91 of 91 www.elegantAlorg

http://www.elegantAI.org

