

Intelligent Machines

Module A

Unit #8

RGB LED

Module A Unit #8 RGB LED

Sketch A8.1 built-in RGB LED

Sketch A8.2 more colours

Sketch A8.3 looping round the array

Sketch A8.4 random selection

Introduction to RGB LED

The board does have another built-in LED; it is an **RGB LED**, that means it has a **red** (**LEDR**) component, **green** (**LEDG**) component, and a **blue** (**LEDB**) component. So you can have a **red**, **blue**, or **green** LED, and you can combine them to create colours like **yellow**, **cyan**, **magenta**, or **white**. They are not **PWM** pins, so we cannot mix them together to create lots of colours as you can with p5.js.

Sketch A8.1 built-in RGB LED

To start with, we will have **red** on for one second, **green** on for one second, **blue** on for one second, and all off for one second. This is slightly counterintuitive: for a particular colour LED to be **on**, it has to be set to **LOW**; conversely, to switch a colour LED **off**, it has to be set to **HIGH**. I know, confusing, isn't it?

Arduino sketch

```
void setup()
{
    pinMode(LED_R, OUTPUT);
    pinMode(LED_G, OUTPUT);
    pinMode(LED_B, OUTPUT);
}

void loop()
{
    // RED
    digitalWrite(LED_R, LOW);
    digitalWrite(LED_G, HIGH);
    digitalWrite(LED_B, HIGH);
    delay(1000);

    // GREEN
    digitalWrite(LED_R, HIGH);
    digitalWrite(LED_G, LOW);
    digitalWrite(LED_B, HIGH);
    delay(1000);

    // BLUE
    digitalWrite(LED_R, HIGH);
    digitalWrite(LED_G, HIGH);
```

```
digitalWrite(LEDB, LOW);
delay(1000);

// RGB OFF
digitalWrite(LEDR, HIGH);
digitalWrite(LEDG, HIGH);
digitalWrite(LEDB, HIGH);
delay(1000);

}
```

Notes

They should cycle through those **RGB** colours and then stop.

Code Explanation

pinMode(LEDR, OUTPUT);	LEDR is the red component of the LED, initialise it as an output
digitalWrite(LEDR, LOW);	Writes to the LEDR that it is to switch it on
digitalWrite(LEDR, HIGH);	Writes to the LEDR that it is to switch it off
delay(1000);	Waits for one second

Sketch A8.2 more colours

Adding in all the other colours for good measure.

Arduino sketch

```
void setup()
{
    pinMode(LED_R, OUTPUT);
    pinMode(LED_G, OUTPUT);
    pinMode(LED_B, OUTPUT);
}

void loop()
{
    // RED
    digitalWrite(LED_R, LOW);
    digitalWrite(LED_G, HIGH);
    digitalWrite(LED_B, HIGH);
    delay(1000);

    // GREEN
    digitalWrite(LED_R, HIGH);
    digitalWrite(LED_G, LOW);
    digitalWrite(LED_B, HIGH);
    delay(1000);

    // BLUE
    digitalWrite(LED_R, HIGH);
    digitalWrite(LED_G, HIGH);
    digitalWrite(LED_B, LOW);
    delay(1000);
```

```
// YELLOW
digitalWrite(LED_R, LOW);
digitalWrite(LED_G, LOW);
digitalWrite(LED_B, HIGH);
delay(1000);

// MAGENTA
digitalWrite(LED_R, LOW);
digitalWrite(LED_G, HIGH);
digitalWrite(LED_B, LOW);
delay(1000);

// CYAN
digitalWrite(LED_R, HIGH);
digitalWrite(LED_G, LOW);
digitalWrite(LED_B, LOW);
delay(1000);

// WHITE
digitalWrite(LED_R, LOW);
digitalWrite(LED_G, LOW);
digitalWrite(LED_B, LOW);
delay(1000);

// RGB OFF
digitalWrite(LED_R, HIGH);
digitalWrite(LED_G, HIGH);
digitalWrite(LED_B, HIGH);
delay(1000);
}
```


Notes

Just for fun. If you could alter the value of each one, then you could create more colours, but they are either **HIGH** or **LOW**, unfortunately.

Sketch A8.3 looping round the array

! New sketch.

Instead of hard coding everything, let's see if we can achieve the same thing but with just fewer lines of code. To achieve this, we will need to use **for()** loops and **arrays**. The array will contain the names of the LEDs. We are treating them as integers, even though they are clearly not numbers. We start with all the LED colours **off** (**HIGH**), then switch one LED colour **on** (**LOW**), one at a time.

Arduino sketch

```
int led[] = {LEDR, LEDG, LEDB};

void setup()
{
    for (int i = 0; i < 3; i++)
    {
        pinMode(led[i], OUTPUT);
    }
}

void loop()
{
    for (int i = 0; i < 3; i++)
    {
        digitalWrite(LEDR, HIGH);
        digitalWrite(LEDG, HIGH);
        digitalWrite(LEDB, HIGH);
        digitalWrite(led[i], LOW);
        delay(1000);
    }
}
```

Notes

Cycles through the colours.

Challenges

1. How would you remove them all for one second?
2. What would happen if you didn't have them all off (**HIGH**) in the **for()** loop?

Code Explanation

<pre>int led[] = {LEDR, LEDG, LEDB};</pre>	Create an array called led. Put three elements into that array, the names of the LEDs.
<pre>for (int i = 0; i < 3; i++) { pinMode(led[i], OUTPUT); }</pre>	A for loop starts at 0 (i = 0), adds 1 each time (i++) and stops before it gets to 3 (i < 3).
<pre>pinMode(led[i], OUTPUT);</pre>	led[i] is the index reference in the array. index[0] is LEDR, index[1] is LEDG and index[2] is LEDB

Sketch A8.4 random selection

Another solution: Now it will select an LED at random.

! Remove the **for()** loop and the curly brackets.

Arduino sketch

```
int led[] = {LEDR, LEDG, LEDB};
```

```
void setup()
```

```
{
```

```
  for (int i = 0; i < 3; i++)
```

```
{
```

```
  pinMode(i, OUTPUT);
```

```
}
```

```
}
```

```
void loop()
```

```
{
```

```
  int i = random(0, 3);
```

```
  digitalWrite(LEDR, HIGH);
```

```
  digitalWrite(LEDG, HIGH);
```

```
  digitalWrite(LEDB, HIGH);
```

```
  digitalWrite(led[i], LOW);
```

```
  delay(1000);
```

```
}
```

Notes

It will select the same one more than once. Notice that it is random between **0** and **3**, that is, it is inclusive of **0** but up to **3** but not including **3**, as we only have three LEDs.

 Challenge

For a pleasing effect, make the delay much smaller, e.g. **100**.