
Intelligent

Machines

Module A

Unit #9

the button

Module A Unit #9 button

Sketch A9.1 LED button

Sketch A9.2 LED toggle

Sketch A9.3 debounce

Contents

Nano module A unit #9 of 2 12 www.elegantAI.org

http://www.elegantAI.org

The button is a tactile or momentary push button. It makes contact with a
metal plate when you push down and completes the circuit. When you stop
pushing, it releases and is no longer in contact and hence breaks the
circuit. See Fig. 2.

As you can see, it has four pins protruding from the body of the button
and a black button on top. This kind of button fits nicely on the
breadboard. The pins are connected as shown in Fig. 2. When you press the
button, you connect the pins from left to right (as seen in the diagram
below). The pins top to bottom are already connected internally.

To use this button, see Fig.1 (rather than a button module), we need a
resistor. The beauty of the Arduino is that it has a built-in resistor we can
use with the button (but not with an LED!). It is called a pull-up resistor,
more on that later.

Introduction to the button

Nano module A unit #9 of 3 12 www.elegantAI.org

Figure 1: button

http://www.elegantAI.org

As you look down at the button, it has four legs (pins). The pins A and A*
are connected permanently, as are B and B*. When you press the button,
A and B are connected, and A* and B* are also connected.

How the button is connected

Nano module A unit #9 of 4 12 www.elegantAI.org

Figure 2: looking down

http://www.elegantAI.org

The full list is here. Look at the image below and the wiring diagram
(fig.5).

1 x Arduino Nano 33 BLE

1 x breadboard

1 x button

2 x male-to-male jumper leads

You could add a resistor in series with the button, but the Nano has a
built-in resistor that you can pull up. This saves you the bother. The
downside is that the logic (HIGH = off and LOW = on) is reversed.

What you will need

Nano module A unit #9 of 5 12 www.elegantAI.org

Figure 3: component setup

http://www.elegantAI.org

You will need two wires to connect the button to the device.

We are going to add the button to the breadboard. You can put it
anywhere away from the board itself.

See Fig.4 below. The wiring diagram shows the connections.

Circuit Diagram for the button

Button Pins Arduino Pins

A GND

B 2 (digital pin 2)

Nano module A unit #9 of 6 12 www.elegantAI.org

Figure 4: wiring diagram

http://www.elegantAI.org

Connect the button as shown, then after writing the code and uploading it
to the Arduino, press the button. The LED should come on when pressed
and off when released. When using the pull-up resistor, the default (not
pressed) state is HIGH. This is similar to the RGB LED, still a little bit
counterintuitive; if you use an external resistor, the opposite (more logical)
is true.

Sketch A9.1 LED button

Arduino sketch

int ledPin = 13;

int buttonPin = 2;

void setup()

{

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin, INPUT_PULLUP);

}

void loop()

{

 int button = digitalRead(buttonPin);

 if (button != LOW)

 {

 digitalWrite(ledPin, LOW);

 }

 else

 {

 digitalWrite(ledPin, HIGH);

 }

}

Nano module A unit #9 of 7 12 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

As an alternative, I have given the button and the LED variable names. This
allows you to make changes once rather than sifting through the whole
code and changing it multiple times.

🛠 Code Explanation

pinMode(buttonPin, INPUT_PULLUP); Using the pull-up (internal) resistor

if (button != LOW) The != means not. If the button is not
LOW (pressed)…

Nano module A unit #9 of 8 12 www.elegantAI.org

http://www.elegantAI.org

In this sketch, we are doing more than just switching it on and off with
the button, but toggling it so that on one press the LED is on and on the
next press of the button the LED switches off. This is more difficult than
the previous sketch. Hold the button for a second each time.

❗ This works very badly because of a condition known as bounce (we
will look at that in the next sketch).

Sketch A9.2 LED toggle

Arduino sketch

int ledPin = 13;

int buttonPin = 2;

bool ledState = LOW;

bool lastButtonState = HIGH;

bool currentButtonState = HIGH;

void setup()

{

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin, INPUT_PULLUP);

}

void loop()

{

 lastButtonState = currentButtonState;

 currentButtonState = digitalRead(buttonPin);

 if(lastButtonState == LOW && currentButtonState == HIGH)

 {

 ledState = !ledState;

 digitalWrite(ledPin, ledState);

 }

}

Nano module A unit #9 of 9 12 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

I will be honest with you, this requires some logical thought to work out
what is happening. In simple terms, when you press the button, the state
of current and previous end up being LOW, but when the button is
released, the current then becomes HIGH, thus changing the ledState
from either HIGH to LOW or LOW to HIGH.

Just work through the sketch to follow the logic; the logic isn’t flawed,
but the button is. The problem is that the contacts, as you press the
button, jump or bounce and give false readings. The next sketch
addresses this problem by taking into account the bounce.

🛠 Code Explanation

bool ledState = LOW; This boolean variable defines the state of

the LED, initially it is set to on.

bool lastButtonState = HIGH; We introduce a boolean previous state to
compare to the current.

bool currentButtonState = HIGH; This boolean state is also the current and
is used to compare to the the previous.

lastButtonState =
currentButtonState;

This updates the state of the previous
state.

currentButtonState =
digitalRead(buttonPin);

The latest state is updated by reading if
the button has been pressed.

if(lastButtonState == LOW &&
currentButtonState == HIGH)

When the button is pressed the state is
LOW but when the the button is released
it is HIGH.

ledState = !ledState;

When the above condition is true: the
lastButtonState is LOW and the
currentButtonState is HIGH the LED is
turned on if off and on if off.

Nano module A unit #9 of 10 12 www.elegantAI.org

http://www.elegantAI.org

I recommend starting a new sketch; too many changes to highlight. To
tackle the bounce problem, we need to introduce some sort of delay to
counter that. We will call that debounceDelay.

Sketch A9.3 debounce

Arduino sketch

int ledPin = 13;

int buttonPin = 2;

int ledState = LOW;

int buttonState = LOW;

int lastButtonState = LOW;

int currentButtonState = LOW;

long lastDebounceTime = 0;

long debounceDelay = 50;

void setup()

{

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin, INPUT_PULLUP);

 digitalWrite(ledPin, ledState);

}

void loop()

{

 currentButtonState = digitalRead(buttonPin);

 if (currentButtonState != lastButtonState)

 {

 lastDebounceTime = millis();

 }

 if ((millis() - lastDebounceTime) > debounceDelay)

 {

Nano module A unit #9 of 11 12 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

This is more about Boolean logic than the code. But all that code is just to
toggle an LED on or off. This is what coding is all about: problem solving.
This is a workaround for a hardware issue.

🛠 Code Explanation

 if (currentButtonState != buttonState)

 {

 buttonState = currentButtonState;

 if (buttonState == HIGH)

 {

 ledState = !ledState;

 }

 }

 }

 digitalWrite(ledPin, ledState);

 lastButtonState = currentButtonState;

}

long lastDebounceTime = 0; These two lines of code are the key to this
working, they have to be long because they use
the millis() function and the number can get big
very quickly.

long debounceDelay = 50;

Nano module A unit #9 of 12 12 www.elegantAI.org

http://www.elegantAI.org

