
Intelligent

Machines

Module C

Unit #2

accelerometer

prediction

Module C Unit #2 accelerometer prediction

The index.html file

The port.js file

Sketch C2.1 basic code

Sketch C2.2 mouse gesture model

Sketch C2.3 movement model

Content

Nano module D unit #2 of 2 15 www.elegantAI.org

http://www.elegantAI.org

Now we have the data, it is time to train the model and test it by
predicting the movement you are making, whether it is none, vertical,
horizontal, or circular.

We will have the predicted results appear on the canvas as you move the
Arduino.

Introduction to accelerometer prediction

Nano module D unit #2 of 3 15 www.elegantAI.org

http://www.elegantAI.org

We have the ml5.js library and the port.js file as before.

🗒 Notes

Nothing new.

The index.html file

index.html

<!DOCTYPE html>

<html lang="en"><head>

 <script src="https://cdn.jsdelivr.net/npm/p5@2.1.1/lib/
p5.js"></script>

 <script src="https://unpkg.com/p5-webserial@0.1.1/build/
p5.webserial.js"></script>

 <script src="https://unpkg.com/ml5@1/dist/ml5.min.js"></
script>

 <link rel="stylesheet" type="text/css" href="style.css">

 <meta charset="utf-8">

 </head>

 <body>

 <main>

 </main>

 <script src="sketch.js"></script>

 <script src="port.js"></script>

</body></html>

Nano module D unit #2 of 4 15 www.elegantAI.org

http://www.elegantAI.org

❗ This is our port.js, just for reference.

The port.js file

port.js

const serial = new p5.WebSerial()

let portButton

let inString

let list = []

let x = 0

let y = 0

let z

function navigation()

{

 if (!navigator.serial)

 {

 alert("WebSerial is not supported in this browser. Try
Chrome")

 }

 navigator.serial.addEventListener("conenect", portConnect)

 navigator.serial.addEventListener("disconnect", portDisconnect)

 serial.getPorts()

 serial.on("noport", makePortButton)

 serial.on("portavailable", openPort)

 serial.on("requesterror", portError)

 serial.on("data", serialEvent)

 serial.on("close", makePortButton)

}

function makePortButton()

{

 portButton = createButton("choose port")

Nano module D unit #2 of 5 15 www.elegantAI.org

http://www.elegantAI.org

 portButton.position(10, 10)

 portButton.mousePressed(choosePort)

}

function choosePort()

{

 if (portButton) portButton.show()

 serial.requestPort()

}

function openPort()

{

 serial.open().then(initiateSerial)

 function initiateSerial()

 {

 console.log("port open")

 if (portButton) portButton.hide()

 }

}

function portError(err)

{

 alert("Serial port error: " + err)

}

function portConnect()

{

 console.log("port connected")

 serial.getPorts()

}

function portDisconnect()

{

Nano module D unit #2 of 6 15 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Just the same as before.

 serial.close()

 console.log("port disconnected")

}

function closePort()

{

 serial.close()

}

function serialEvent()

{

 inString = serial.readStringUntil("\r\n")

 if (inString)

 {

 list = splitTokens(inString, ",")

 if (list.length > 2)

 {

 x = float(list[0])

 y = float(list[1])

 z = float(list[2])

 }

 }

}

Nano module D unit #2 of 7 15 www.elegantAI.org

http://www.elegantAI.org

This is our bog-standard code for the Arduino.

Sketch C2.1 basic code

Arduino sketch

#include "Arduino_BMI270_BMM150.h"

float x;

float y;

float z;

void setup()

{

 Serial.begin(9600);

 if (!IMU.begin())

 {

 Serial.println("Failed to initialise IMU");

 while (true);

 }

}

void loop()

{

 if (IMU.accelerationAvailable())

 {

 IMU.readAcceleration(x, y, z);

 }

 Serial.print(x);

 Serial.print(",");

 Serial.print(y);

 Serial.print(",");

 Serial.println(z);

}

Nano module D unit #2 of 8 15 www.elegantAI.org

http://www.elegantAI.org

❗ In sketch.js

From the first module on AI, we have the gesture example of the
classification task with the ml5.js library. The original sketch is shown
below. To run this, you will also need to add the ml5.js library to the
index.html file. In this example below, we used synthetic data (we made up
the values).

For our Arduino IMU prediction, we need to use real data, and to do
that, we need to collect it and then add it into the sketch below with some
other minor changes.

❗ I have highlighted the lines of code we will not be needing (you may
delete).

Sketch C2.2 mouse gesture model

sketch.js

let nn

let status = "training"

let start

let end

let data = [

 { x: 1, y: 0.1, label: "right"},

 { x: 1, y: -0.1, label: "right"},

 { x: -1, y: 0.1, label: "left"},

 { x: -1, y: -0.1, label: "left"},

 { x: 0.1, y: 1, label: "down"},

 { x: -0.1, y: 1, label: "down"},

 { x: 0.1, y: -1, label: "up"},

 { x: -0.1, y: -1, label: "up"}

]

function setup()

{
Nano module D unit #2 of 9 15 www.elegantAI.org

http://www.elegantAI.org

 createCanvas(400, 400)

 ml5.setBackend("webgl")

 let options = {

 task: “classification",

 debug: false

 }

 nn = ml5.neuralNetwork(options)

 for (let item of data)

 {

 let inputs = [item.x, item.y]

 let outputs = [item.label]

 nn.addData(inputs, outputs)

 }

 nn.train({epochs: 250}, finishedTraining)

}

function finishedTraining()

{

 status = "ready"

}

function draw()

{

 background(220)

 textAlign(CENTER, CENTER)

 textSize(64)

 text(status, width/2, height/2)

 if (start && end)

 {

 strokeWeight(8)

 line(start.x, start.y, end.x, end.y)

 }

}

Nano module D unit #2 of 10 15 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

This code is something you would’ve come across if you had followed the
AI tutorials. It predicts the movement of the mouse up, down, left, and
right. We are going to use this with our new data for none, vertical,
horizontal, and circular. If you want to know more in detail, then I
recommend that you work through the tutorial.

function mousePressed()

{

 start = createVector(mouseX, mouseY)

}

function mouseDragged()

{

 end = createVector(mouseX, mouseY)

}

function mouseReleased()

{

 let dir = p5.Vector.sub(end, start)

 dir.normalize()

 let inputs = [dir.x, dir.y]

 nn.classify(inputs, gotResults)

}

function gotResults(results)

{

 status = results[0].label

 console.log(status)

}

Nano module D unit #2 of 11 15 www.elegantAI.org

http://www.elegantAI.org

We are now ready to add the data we collected in the previous unit. This is
why we reformatted the data so that it matches the data used in the
gesture model.

Sketch C2.3 movement model

sketch.js

let nn

let status = "training"

let data = [

 {x: -0.02, y: 0.02, label: "none"},

 {x: -0.02, y: 0.02, label: "none"},

 {x: -0.02, y: 0.02, label: "none"},

 {x: -0.02, y: 0.02, label: "none"},

 {x: -0.02, y: 0.00, label: "none"},

 {x: -0.02, y: 0.01, label: "none"},

 {x: -0.02, y: 0.00, label: "none"},

 {x: -0.02, y: 0.00, label: "none"},

 {x: -0.02, y: 0.00, label: "none"},

 {x: -0.02, y: 0.01, label: "none"},

 {x: 0.14, y: 0.29, label: "horizontal"},

 {x: 0.10, y: 0.28, label: "horizontal"},

 {x: 0.06, y: 0.14, label: "horizontal"},

 {x: 0.03, y: -0.06, label: "horizontal"},

 {x: -0.01, y: -0.11, label: "horizontal"},

 {x: -0.02, y: -0.22, label: "horizontal"},

 {x: -0.02, y: -0.24, label: "horizontal"},

 {x: -0.05, y: -0.28, label: "horizontal"},

 {x: -0.08, y: -0.34, label: "horizontal"},

 {x: -0.13, y: -0.48, label: "horizontal"},

 {x: 0.20, y:0.07, label: "vertical"},

 {x: 0.13, y:-0.04, label: "vertical"},

Nano module D unit #2 of 12 15 www.elegantAI.org

http://www.elegantAI.org

 {x: 0.25, y:-0.01, label: "vertical"},

 {x: 0.15, y:-0.03, label: "vertical"},

 {x: 0.04, y:-0.02, label: "vertical"},

 {x: 0.01, y:0.02, label: "vertical"},

 {x: -0.04, y:0.03, label: "vertical"},

 {x: -0.02, y:0.01, label: "vertical"},

 {x: -0.03, y:0, label: "vertical"},

 {x: 0.20, y:0.07, label: "vertical"},

 {x: 0.19, y: -0.29, label: "circular"},

 {x: 0.16, y: -0.37, label: "circular"},

 {x: 0.05, y: -0.36, label: "circular"},

 {x: -0.02, y: -0.37, label: "circular"},

 {x: -0.11, y: -0.45, label: "circular"},

 {x: -0.12, y: -0.42, label: "circular"},

 {x: -0.27, y: -0.36, label: "circular"},

 {x: -0.32, y: -0.31, label: "circular"},

 {x: -0.37, y: -0.19, label: "circular"},

 {x: -0.44, y: -0.07, label: "circular"}

]

function setup()

{

 createCanvas(400, 400)

 navigation()

 ml5.setBackend("webgl")

 let options = {

 task: "classification",

 debug: false

 }

 nn = ml5.neuralNetwork(options)

 for (let item of data)

 {

 let inputs = [item.x, item.y]

Nano module D unit #2 of 13 15 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

A simpler sketch in many ways, but with more data.

 let outputs = [item.label]

 nn.addData(inputs, outputs)

 }

 nn.train({epochs: 250}, finishedTraining)

}

function finishedTraining()

{

 status = "ready"

 console.log(status)

}

function draw()

{

 background(220)

 frameRate(20)

 textAlign(CENTER, CENTER)

 textSize(64)

 text(status, width/2, height/2)

 inputs = [x, y]

 nn.classify(inputs, gotResults)

}

function gotResults(results)

{

 status = results[0].label

 console.log(status)

}

Nano module D unit #2 of 14 15 www.elegantAI.org

http://www.elegantAI.org

Nano module D unit #2 of 15 15 www.elegantAI.org

Predicting the Accelerometer

http://www.elegantAI.org

