
Intelligent

Machines

Module D

Unit #1

truth tables

Module D Unit #1 truth tables for OR and XOR

Introduction to OR and XOR

What you will need

Circuit Diagram for the button

The OR truth table

Sketch D1.1 hard coding OR truth table

The XOR truth table

Sketch D1.2 hard coding XOR truth table

Content

Nano module D unit #1 of 2 10 www.elegantAI.org

http://www.elegantAI.org

We will add a second button to our Arduino Nano 33 BLE. It will be
attached to digital pin D3. We will use the same built-in LED on pin 13.

We are going to explore a very simple premise. How to use AI to control
an LED with inputs from 2 buttons. We will look at two examples. The
first…

Introduction to OR and XOR

Nano module D unit #1 of 3 10 www.elegantAI.org

http://www.elegantAI.org

The full list is here. Look at the image below and the wiring diagram
(fig.5).

1 x Arduino Nano 33 BLE

1 x breadboard

2 x buttons

5 x male-to-male jumper leads

You could add a resistor in series with the button, but the Arduino Nano
33 BLE has a built-in resistor that you can pull up. This saves you the
bother. The downside is that the logic (HIGH = off and LOW = on) is
reversed.

What you will need

Nano module D unit #1 of 4 10 www.elegantAI.org

Figure 1: component setup

http://www.elegantAI.org

You will need two wires to connect the button to the device.

We are going to add the button to the breadboard. You can put it
anywhere away from the board itself.

See Fig.2 below. The wiring diagram shows the connections.

Circuit Diagram for the button

Button Pins Arduino Pins

A (both) GND

B 2 (digital pin D2)

C 3 (digital pin D3)

Nano module D unit #1 of 5 10 www.elegantAI.org

Figure 2: wiring diagram

http://www.elegantAI.org

A truth table is a way of representing the relationship between inputs and
outputs. This helps to clarify what we expect to see. One of the simplest is
the OR truth table, which has two inputs and one output. Our two inputs
are button 1 and button 2, and our output is the LED, which is either on
or off.

We use a simple notion for describing the state of the inputs: 1 or 0. It is
quite logical: we give it 1 if the button is pressed and 0 if it is not, and we
give the LED 1 if it is on and 0 when it is off. Simple.

Hopefully, this seems quite logical. If button 1 is pressed, the LED is on; if
button 2 is pressed, the LED is also on; if both buttons are pressed, again
the LED is on; if no button is pressed, the LED is off. I know I am
labouring this point, but a sketch is coming to you soon. We will look at an
XOR truth table later.

This is easy to hard-code; we don’t really need an AI model to do this, so
we will start with hard coding it anyway. We will see if we can use an AI
model to do this job for us to illustrate the concept with a simple
challenge.

The OR truth table

OR Truth Table

Button 1 Button 2 LED

0 0 0

1 0 1

0 1 1

1 1 1

Nano module D unit #1 of 6 10 www.elegantAI.org

http://www.elegantAI.org

This is a simple OR configuration using two buttons (inputs) and one LED
(output). The LED is on if button 1 or button 2 or both are pressed.

🗒 Notes

Now we have solved the OR truth table with two buttons and an LED, let’s
look at the XOR problem.

Sketch D1.1 hard coding OR truth table

Arduino sketch

int ledPin = 13;

int buttonPin1 = 2;

int buttonPin2 = 3;

void setup()

{

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin1, INPUT_PULLUP);

 pinMode(buttonPin2, INPUT_PULLUP);

}

void loop()

{

 buttonPin1 = digitalRead(2);

 buttonPin2 = digitalRead(3);

 if (buttonPin1 == LOW || buttonPin2 == LOW)

 {

 digitalWrite(ledPin, HIGH);

 }

 else

 {

 digitalWrite(ledPin, LOW);

 }

}

Nano module D unit #1 of 7 10 www.elegantAI.org

http://www.elegantAI.org

This looks almost exactly the same, but there is one significant difference,
which I have highlighted in blue. The LED only comes on if only one button
is pressed, but not both.

Let’s go through the logic. If button 1 is pressed, the LED is on; if button
2 is pressed, the LED is also on; but if both buttons are pressed, the LED
is off; if no button is pressed, the LED is also off.

This is the XOR truth table, and the difference is significant from a
machine learning point of view. The OR truth table is linearly separable and
could be solved (probably) by a single perceptron. But the XOR truth table
needs a neural network to solve. This is also easy to hard-code, as was the
OR example.

The XOR truth table

XOR Truth Table

Button 1 Button 2 LED

0 0 0

1 0 1

0 1 1

1 1 0

Nano module D unit #1 of 8 10 www.elegantAI.org

http://www.elegantAI.org

We just need to change one line of code and add in some more conditional
statements.

Sketch D1.2 hard coding XOR truth table

Arduino sketch

int ledPin = 13;

int buttonPin1 = 2;

int buttonPin2 = 3;

void setup()

{

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin1, INPUT_PULLUP);

 pinMode(buttonPin2, INPUT_PULLUP);

}

void loop()

{

 buttonPin1 = digitalRead(2);

 buttonPin2 = digitalRead(3);

 if ((buttonPin1 == LOW || buttonPin2 == LOW) && (!(buttonPin1
== LOW && buttonPin2 == LOW)))

 {

 digitalWrite(ledPin, HIGH);

 }

 else

 {

 digitalWrite(ledPin, LOW);

 }

}

Nano module D unit #1 of 9 10 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

This should work according to the truth table for the XOR problem.

🛠 Code Explanation

&& (!(buttonPin1 == LOW &&
buttonPin2 == LOW)))

Returns true as long as button 1 and button
2 are not pressed at the same time

Nano module D unit #1 of 10 10 www.elegantAI.org

http://www.elegantAI.org

