Intelligent
Machines
Module D
Unit #2
neural
network

o
Lrand
1t

Module D Unit #2 the XOR neural network

Content

Introduction fo the neural network
The parameters and hyperparameters

Sketch D2.1
Sketch D2.2
Sketch D2.3
Sketch D2.4
Sketch D2.5
Sketch D2.6
Sketch D2.7
Sketch D2.8
Sketch D2.9
Sketch D2.10
Sketch D2.11
Sketch D2.12
Sketch D2.13
Sketch D2.14
Sketch D2.15
Sketch D2.16
Sketch D2.17
Sketch D2.18
Sketch D2.19
Sketch D2.20
Sketch D2.21
Sketch D2.22
Sketch D2.23
Sketch D2.24

Nano module D unit #2

let us begin

the buttons function

input and target data
naming key variables
training is true

filling the weights
creating an array
randomising the truth table
cycle through

introducing the sum

the weighted sum
activation function

more weighted sums

error

delta

delta fo hidden

updating the hidden weights
change the output weights
seeing the error

RGB LED training finished
truth table buttons

inputs to hidden

hidden to output

output to LED

2 of 114

www.elegantAl.org

http://www.elegantAI.org

& Introduction to the neural network

If you have followed along with the previous modules, you may be
expecting a nice library we could use fo do the work for us. The good
news is there are libraries we could use; the bad news is that they can be
quite complex, and for the moment, we can create our own neural network
right inside the Arduino Nano 33 BLE.

We will build a neural network with two input neurons (nodes), button 1
and button 2, four hidden neurons (nodes), and one output neuron (node),
the LED. See the diagram below:

Figure 1: neural network

inpurs hicklen

Nano module D unit #2 3 of 114 www.elegantAlorg

http://www.elegantAI.org

=
b

i The parameters and hyperparameters

Learning Rate: The learning rate determines the size of the step taken
during each update. It plays a crucial role in both standard gradient
descent and momentum-based optimisers.

Momentum: This controls how much of the past gradients are remembered
in the current update. A value close to 1 means the optimiser will have
more inertia, while a value closer to @ means less reliance on past
gradients.

Bias: Although I have drawn two input neurons, four hidden neurons, and
one output neuron. We need to add an extra neuron to the input layer and
an extra neuron to the hidden layer. They fire one each time just in case
we have a situation where the neurons all become zero, which is definitely
not what we want. The added benefit of adding bias neurons is stability.

Backpropagation: Once the data has flowed through the neural
network and the error calculated, it needs fto work back through the
neural network, tweaking the weights so that when it goes through again,
the error is less. This is called backpropagation.

Activation function: For this, we use the sigmoid function. This is
perfectly fine for such a small neural network: y = 1 / (1 + e~(-x))

Error: To calculate the error, we use a form of Mean Squared Error
(MSE). Which looks like: error = 0.5 * (target - output)~”2

Weights: We have two sets of weights, those between the input and

hidden neurons, and those between the hidden and output neurons. We will
call them hiddenWeights and outputWeights, respectively.

Nano module D unit #2 4 of 114 www.elegantAlorg

http://www.elegantAI.org

.7l Sketch D2.1 let us begin

I Our starting sketch.

Arduino sketch

const int ledPin = 13;

1l
N

const int buttonPinl

1l
w

const int buttonPin2

void setup()

{
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode (buttonPinl, INPUT_PULLUP);
pinMode(buttonPin2, INPUT_PULLUP);

void loop()

{
buttons();

void buttons()

{

// this is where we activate the buttons
}
. Notes

We have started with our basic sketch, plus added an extra function called
buttons(). This is where the prediction takes place after we have
trained the neural network. We use const int rather than just int because
these are fixed variables (a bit contradictory, I know). We arent going to
change these, so a const will mitigate accidentally changing them.

Nano module D unit #2 5 of 114 www.elegantAl.org

http://www.elegantAI.org

Sketch D2.2 the buttons function

We add two more variables, inputPinl and inputPin2, and these are
changeable. We will use them to read the values on the button pins.

Arduino sketch
const int ledPin = 13;

const int buttonPinl

1l
N

const int buttonPin2

1
w

int inputPinl;

int inputPin2;

void setup()

{
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode(buttonPinl, INPUT_PULLUP);
pinMode (buttonPin2, INPUT_PULLUP);

void loop()

{
buttons();

void buttons()

{
inputPinl

digitalRead(buttonPinl);
inputPin2 = digitalRead(buttonPin2);
if (inputPinl == LOW || inputPin2 == LOW)
{

digitalWrite(ledPin, HIGH);
b

Nano module D unit #2 6 of 114 www.elegantAl.org

http://www.elegantAI.org

else

{
digitalWrite(ledPin, LOW);

Hit

, Notes
When you press the buttons, the LED should light up.

Nano module D unit #2 7 of 114 www.elegantAlorg

http://www.elegantAI.org

7l Sketch D2.3 input and target data

We have our truth table. We need to convert that into an array that can
be used. We have four rows and two input columns, and one output column.
This is a very, very small dataset. We can augment that by randomising the
dataset, and later on we can add more (multiple repeats).

Here we create an input array and a target array. They are const integers
as we are using 15 and 0fs, and also we dont want tfo alter the arrays. I
am using a generic neural network, so I am freating this as if it might
have more than one tfarget.

Arduino sketch
const int ledPin = 13;

const int buttonPinl

1l
N

const int buttonPin2

1
w

int inputPinl;

int inputPin2;

const int input([4][2] = {
{0, 01},

{1, 01},

{0, 11},

{1, 1}

I

const int target[4][1] = {
{0},
{11},
{11},
{0}
I

void setup()

Nano module D unit #2 8 of 114 www.elegantAl.org

http://www.elegantAI.org

Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode(buttonPinl, INPUT_PULLUP);
pinMode (buttonPin2, INPUT_PULLUP);

void loop()

{
buttons();

void buttons()
{
inputPinl = digitalRead(buttonPinl);
inputPin2 = digitalRead(buttonPin2);
if (inputPinl == LOW || inputPin2 == LOW)
{
digitalWrite(ledPin, HIGH);
b
else

{
digitalWrite(ledPin, LOW);

A 4Xx2 array for the input and a 4x1 array for the target.

Nano module D unit #2 9 of 114 www.elegantAlorg

http://www.elegantAI.org

Sketch D2.4 naming key variables

Give the variables meaningful names. They are constants because they will
not change, and we dont want to accidentally change them.

Arduino sketch

const int ledPin = 13;

const int buttonPinl = 2;
const int buttonPin2 = 3;
int inputPinl;
int inputPin2;
const int truthTable = 4;
const int inputNodes = 2;

const int hiddenNodes = 4;

const int outputNodes = 1;

const int input[truthTable] [inputNodes] = {
{0, 01},
{1, 0},
{0, 11},
{1, 1}
L

const int target[truthTablel [outputNodes] = {
{01},
{11},
{11},
{0}
b

void setup()

{
Serial.begin(9600);

Nano module D unit #2 10 of 114 www.elegantAl.org

http://www.elegantAI.org

pinMode(ledPin, OUTPUT);
pinMode (buttonPinl, INPUT_PULLUP);
pinMode (buttonPin2, INPUT_PULLUP);

void loop()

{
buttons();

void buttons()

{
inputPinl = digitalRead(buttonPinl);
inputPin2 = digitalRead(buttonPin2);
if (inputPinl == LOW || inputPin2 == LOW)
{
digitalWrite(ledPin, HIGH);
b
else
{
digitalWrite(ledPin, LOW);
¥
b
", Notes

This is a generic neural network that will work with any set of inputs and
targefts.

Nano module D unit #2 11 of 114 www.elegantAlorg

http://www.elegantAI.org

Sketch D2.5 training is true

We want a boolean expression fo indicate when training is to take place
and when it is finished. We create a conditional statement in the void
Loop() function.

Arduino sketch

const int ledPin = 13;

const int buttonPinl = 2;
const int buttonPin2 = 3;
int inputPinl;

int inputPin2;

const int truthTable = 4;
const int inputNodes = 2;
const int hiddenNodes = 4;
const int outputNodes = 1;

bool training = true;

const int input[truthTable] [inputNodes] = {
{0, 01},
{1, 0},
{0, 11},
{1, 1}
b

const int target[truthTable] [outputNodes] = {
{01},
{11},
{11},
{0}
I

void setup()

Nano module D unit #2 12 of 114 www.elegantAl.org

http://www.elegantAI.org

Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode(buttonPinl, INPUT_PULLUP);
pinMode (buttonPin2, INPUT_PULLUP);

void loop()
{
if (training == true)
{
// all the training is going to happen here until...
training = false;
}
buttons();

void buttons()

{
inputPinl = digitalRead(buttonPinl);
inputPin2 = digitalRead(buttonPin2);
if (inputPinl == LOW || inputPin2 == LOW)
{
digitalWrite(ledPin, HIGH);
¥
else
{
digitalWrite(ledPin, LOW);
b

Nano module D unit #2 13 of 114 www.elegantAlorg

http://www.elegantAI.org

Hit

, Notes
Once training is finished, we jump out of the training loop by changing the
boolean value.

Nano module D unit #2 14 of 114 www.elegantAlorg

http://www.elegantAI.org

Sketch D2.6 filling the weights

The weights are random values between @ and 1 to two decimal places.

Arduino sketch
const int ledPin = 13;

const int buttonPinl

1l
N

const int buttonPin2

1
w

int inputPinl;
int inputPin2;
const int truthTable

. 1 1
N B
N - -

const int inputNodes
const int hiddenNodes

const int outputNodes

1
=

bool training = true;
float hiddenWeights[inputNodes + 1] [hiddenNodes];
float outputWeights[hiddenNodes + 1] [outputNodes];

const int input[truthTable] [inputNodes] = {
{0, 01},
{1, 0},
{0, 11},
{1, 1}
L

const int target[truthTablel [outputNodes] = {
{01},
{11},
{11},
{0}
b

void setup()

Nano module D unit #2 15 of 114 www.elegantAl.org

http://www.elegantAI.org

Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode(buttonPinl, INPUT_PULLUP);
pinMode (buttonPin2, INPUT_PULLUP);

void loop()

{
if (training == true)
{
for (int i = @; i < hiddenNodes; i++)
{
for (int j = 0; j <= inputNodes; j++)
{
hiddenWeights[j]l[i] = float(random(100))/100;
b
}
for (int 1 = @; i < outputNodes; i++)
{
for (int j = @0; j <= hiddenNodes; j++)
{
outputWeights[j]l[i] = float(random(100))/100;
}
+
training = false;
¥
buttons();
¥

void buttons()

{

Nano module D unit #2 16 of 114

www.elegantAl.org

http://www.elegantAI.org

inputPinl = digitalRead(buttonPinl);
inputPin2 = digitalRead(buttonPin2);
if (inputPinl == LOW || inputPin2 == LOW)
{
digitalWrite(ledPin, HIGH);
}
else
{
digitalWrite(ledPin, LOW);
}
}
", Notes

To get the kind of weights we want, we have to do it this way in C/C++.

Nano module D unit #2 17 of 114 www.elegantAlorg

http://www.elegantAI.org

7l Sketch D2.7 creating an array

We want to randomise the dataset for the truth table, but first we create
an array that we can randomise and then use to jumble the data to make
it easier to train. We add a global variable, a, so we dont have to keep
declaring it.

Arduino sketch

const int ledPin = 13;

const int buttonPinl = 2;
const int buttonPin2 = 3;
int inputPinl;

int inputPin2;

const int truthTable = 4;
const int inputNodes = 2;
const int hiddenNodes = 4;

const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1] [hiddenNodes];
float outputWeights[hiddenNodes + 1] [outputNodes];
int randomisedTT[truthTable];

int a;

const int input[truthTable] [inputNodes] = {
{0, 01},
{1, 0},
{0, 11},
{1, 1}
I

const int target[truthTable] [outputNodes] = {
{0},
{11},

Nano module D unit #2 18 of 114 www.elegantAl.org

http://www.elegantAI.org

{11},
{0}
};

void setup()

{
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode (buttonPinl, INPUT_PULLUP);
pinMode (buttonPin2, INPUT_PULLUP);
for (a = 0; a < truthTable; a++)
{

randomisedTT[al]l = a;

void loop()
{
if (training == true)
{
for (int i = @; i < hiddenNodes; i++)
{
for (int j = 0; j <= inputNodes; j++)
{
hiddenWeights[j] [i] = float(random(100))/100;

for (int i = @; i < outputNodes; i++)
{
for (int j = @; j <= hiddenNodes; j++)
{
outputWeights[j]l[i] = float(random(100))/100;

Nano module D unit #2 19 of 114 www.elegantAlorg

http://www.elegantAI.org

I

training = false;
¥
buttons();

void buttons()

{
inputPinl = digitalRead(buttonPinl);
inputPin2 = digitalRead(buttonPin2);
if (inputPinl == LOW || inputPin2 == LOW)
{
digitalWrite(ledPin, HIGH);
b
else
{
digitalWrite(ledPin, LOW);
¥
b
", Notes

This hasnt randomised the array just yet, just setting the scene.

Nano module D unit #2 20 of 114 www.elegantAlorg

http://www.elegantAI.org

Sketch D2.8 randomising the truth table

The randomised truth table will be done during the actual training process
once we have initialised the weights. We will want to cycle through the
randomised data a number of times because it is such a tiny dataset. So
we will do this 10000 times.

Arduino sketch

const int ledPin = 13;

const int buttonPinl = 2;
const int buttonPin2 = 3;
int inputPinl;
int inputPin2;
const int truthTable = 4;
const int inputNodes = 2;

const int hiddenNodes = 4;
const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1] [hiddenNodes];
float outputWeights[hiddenNodes + 1] [outputNodes];
int randomisedTT[truthTablel];

int a;

long trainingCycle;

int b;

int c;

const int input[truthTable] [inputNodes] = {
{0, 01},
{1, 0},
{0, 11},
{1, 1}
I

Nano module D unit #2 21 of 114 www.elegantAl.org

http://www.elegantAI.org

const int target[truthTable] [outputNodes] = {
{0},
{11},
{11},
{0}
b

void setup()

{
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode (buttonPinl, INPUT_PULLUP);
pinMode (buttonPin2, INPUT_PULLUP);
randomSeed (analogRead(4)) ;
for (a = 0; a < truthTable; a++)
{

randomisedTT[a]l = a;

void loop()

{
if (training == true)
{
for (int 1 = @; i < hiddenNodes; i++)
{
for (int j = @; j <= inputNodes; j++)
{
hiddenWeights[j]l[i] = float(random(100))/100;
I
I
for (int 1 = 0; i < outputNodes; i++)
Nano module D unit #2 22 of 114

www.elegantAl.org

http://www.elegantAI.org

for (int j = @; j <= hiddenNodes; j++)
{
outputWeights[jl[i] = float(random(100))/100;

for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+

+)
{
for (a = 0; a < truthTable; a++)
{
b = random(truthTable);
c = randomisedTT[a];
randomisedTT[a] = randomisedTT[b];
randomisedTT[b] = c;
}
}
training = false;
¥
buttons();
¥

void buttons()

{
inputPinl = digitalRead(buttonPinl);
inputPin2 = digitalRead(buttonPin2);
if (inputPinl == LOW || inputPin2 == LOW)
{
digitalWrite(ledPin, HIGH);
b
else
{

Nano module D unit #2 23 of 114 www.elegantAlorg

http://www.elegantAI.org

digitalWrite(ledPin, LOW);

Hit

, Notes

We give the random() function a seed value drawn from a random value
on pin 4. It means every time we run the sketch, we get a different
random series of numbers.

Nano module D unit #2 24 of 114 www.elegantAlorg

http://www.elegantAI.org

.7l Sketch D2.9 cycle through

We are going to cycle through each fraining pattern in the randomised
order.

Arduino sketch

const int ledPin = 13;

const int buttonPinl = 2;
const int buttonPin2 = 3;
int inputPinl;

int inputPin2;

const int truthTable = 4;
const int inputNodes = 2;
const int hiddenNodes = 4;

const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1] [hiddenNodes];
float outputWeights[hiddenNodes + 1] [outputNodes];
int randomisedTT[truthTable];

int a;

long trainingCycle;

int b;

int c;

const int input[truthTable] [inputNodes] = {
{0, 01},
{1, 01},
{0, 11},
{1, 1}
I

const int target[truthTable] [outputNodes] = {
{01},

Nano module D unit #2 25 of 114 www.elegantAl.org

http://www.elegantAI.org

{11},

{11},

{0}
b

void setup()

{
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode(buttonPin1l, INPUT_PULLUP);
pinMode (buttonPin2, INPUT_PULLUP);
randomSeed (analogRead(4));
for (a = 0; a < truthTable; a++)
{

randomisedTT[a]l = a;

void loop()

{
if (training == true)
{
for (int i = @; i < hiddenNodes; i++)
{
for (int j = @; j <= inputNodes; j++)
{
hiddenWeights[j][i] = float(random(100))/100;
I
I
for (int 1 = 0; i < outputNodes; i++)
{
for (int j = 0; j <= hiddenNodes; j++)
Nano module D unit #2 26 of 114

www.elegantAl.org

http://www.elegantAI.org

outputWeights[j]l[i] = float(random(100))/100;

for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+

+)

for (a = 0; a < truthTable; a++)

b

C

random(truthTable);

randomisedTT[a];

randomisedTT[al] = randomisedTT[b];

randomisedTT[b] = c;

for (b = 0; b < truthTable; b++)
{

a = randomisedTT[b];

I

training = false;
¥
buttons();

void buttons()

{
inputPinl

digitalRead(buttonPinl);
digitalRead(buttonPin2);

inputPin2

if (inputPinl == LOW || inputPin2 == LOW)

{
digitalWrite(ledPin, HIGH);

Nano module D unit #2 27 of 114

www.elegantAl.org

http://www.elegantAI.org

by

else

{
digitalWrite(ledPin, LOW);

Hit

, Notes
The order of the data set will change on each iteration.

Nano module D unit #2 28 of 114 www.elegantAlorg

http://www.elegantAI.org

Sketch D2.10 introducing the sum

We are going to compute the hidden layer activations. For this, we
need to add up all the weighted sums, which also includes the bias
(the extra neuron). The bias value is 1. We create a global variable for 1
and the sum.

Arduino sketch

const int ledPin = 13;

const int buttonPinl = 2;
const int buttonPin2 = 3;
int inputPinl;
int inputPin2;
const int truthTable = 4;
const int inputNodes = 2;

const int hiddenNodes = 4;
const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1] [hiddenNodes];
float outputWeights[hiddenNodes + 1] [outputNodes];
int randomisedTT[truthTable];

int a;

long trainingCycle;

int b;

int c;

int 1i;

float sum;

const int input[truthTable] [inputNodes] = {
{0, 01},
{1, 0},
{0, 11},
{1, 1}

Nano module D unit #2 29 of 114 www.elegantAl.org

http://www.elegantAI.org

b

const int target[truthTable] [outputNodes]
{01},
{11},
{11},
{0}
i

void setup()

{
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode (buttonPinl, INPUT_PULLUP);
pinMode (buttonPin2, INPUT_PULLUP);
randomSeed (analogRead(4));
for (a = @0; a < truthTable; a++)
{

randomisedTT[al]l = a;

void loop()

{
if (training == true)
{
for (int i = @; i < hiddenNodes; i++)
{
for (int j = 0; j <= inputNodes; j++)
{
hiddenWeights[j]l[i] = float(random(100))/100;
b
I
Nano module D unit #2 30 of 114

www.elegantAl.org

http://www.elegantAI.org

for (int 1 = @; i < outputNodes; i++)

{
for (int j = @; j <= hiddenNodes; j++)
{
outputWeights[j]l[i] = float(random(100))/100;
}
}

for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+
+)

for (a = 0; a < truthTable; a++)

b

C

random(truthTable);
randomisedTT [a];
randomisedTT[b];

C

randomisedTT [a]
randomisedTT[b]

for (b = 0; b < truthTable; b++)
{
a = randomisedTT[b];
for (i = @; i < hiddenNodes; i++)
{
sum = hiddenWeights[inputNodes] [i];

I

training = false;
b
buttons();

Nano module D unit #2 31 of 114 www.elegantAlorg

http://www.elegantAI.org

void buttons()

{

digitalRead(buttonPinl);
inputPin2 = digitalRead(buttonPin2);
if (inputPinl == LOW || inputPin2 == LOW)
{

digitalWrite(ledPin, HIGH);
b
else

{
digitalWrite(ledPin, LOW);

inputPinl

The variable a is redundant here but is used in the next sketch. Building
up slowly.

Nano module D unit #2 32 of 114

www.elegantAl.org

http://www.elegantAI.org

Sketch D2.11 the weighted sum

Now, to add all the weights and inputs to the hidden layer, hence
sum +=. For each hidden neuron, we work out the weighted sums and add
them together before we pass it through the activation function.

Arduino sketch
const int ledPin = 13;
const int buttonPinl = 2;

const int buttonPin2

1
w

int inputPinl;
int inputPin2;
const int truthTable

1 1
1

N B
N - -

const int inputNodes
const int hiddenNodes

const int outputNodes

1
=

bool training = true;

float hiddenWeights[inputNodes + 1] [hiddenNodes];
float outputWeights[hiddenNodes + 1] [outputNodes];
int randomisedTT[truthTable];

int a;

long trainingCycle;

int b;

int c;

int 1i;

float sum;

int j;

const int input[truthTable] [inputNodes] = {
{0, 01},
{1, 01},
{0, 11},
{1, 1}

Nano module D unit #2 33 of 114 www.elegantAlorg

http://www.elegantAI.org

b

const int target[truthTable] [outputNodes]
{01},
{11},
{11},
{0}
i

void setup()

{
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode (buttonPinl, INPUT_PULLUP);
pinMode (buttonPin2, INPUT_PULLUP);
randomSeed (analogRead(4));
for (a = @0; a < truthTable; a++)
{

randomisedTT[al]l = a;

void loop()

{
if (training == true)
{
for (int i = @; i < hiddenNodes; i++)
{
for (int j = 0; j <= inputNodes; j++)
{
hiddenWeights[j]l[i] = float(random(100))/100;
b
I
Nano module D unit #2 34 of 114

www.elegantAl.org

http://www.elegantAI.org

for (int 1 = @; i < outputNodes; i++)

{
for (int j = @; j <= hiddenNodes; j++)
{
outputWeights[j]l[i] = float(random(100))/100;
}
}

for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+
+)

for (a = 0; a < truthTable; a++)

b

C

random(truthTable);
randomisedTT [a];
randomisedTT[b];

C

randomisedTT [a]
randomisedTT[b]

for (b = 0; b < truthTable; b++)
{
a = randomisedTT[b];
for (i = @; i < hiddenNodes; i++)
{
sum = hiddenWeights[inputNodes] [i];
for (j = 0; j < inputNodes; j++)
{
sum += inputlal [j] * hiddenWeights[j]l[il];

Nano module D unit #2 35 of 114 www.elegantAlorg

http://www.elegantAI.org

training = false;
¥
buttons();

void buttons()

{
inputPinl = digitalRead(buttonPinl);
inputPin2 = digitalRead(buttonPin2);
if (inputPinl == LOW || inputPin2 == LOW)
{

digitalWrite(ledPin, HIGH);
¥

else

{
digitalWrite(ledPin, LOW);

Hit

, Notes
We are accumulating the weighted sums for each neuron.

Nano module D unit #2 36 of 114 www.elegantAlorg

http://www.elegantAI.org

Sketch D2.12 activation function

Once all the weighted sums have been added to each neuron, then it
needs to pass through the activation function, which is the
sigmoid function.

Arduino sketch
const int ledPin = 13;
const int buttonPinl = 2;

const int buttonPin2

1
w

int inputPinl;
int inputPin2;
const int truthTable

. 1 1
N B
N - -

const int inputNodes
const int hiddenNodes

const int outputNodes

1
=

bool training = true;

float hiddenWeights[inputNodes + 1] [hiddenNodes];
float outputWeights[hiddenNodes + 1] [outputNodes];
int randomisedTT[truthTable];

int a;

long trainingCycle;

int b;

int c;

int 1i;

float sum;

int j;

float hidden[hiddenNodes];

const int input[truthTable] [inputNodes] = {
{0, 01},
{1, 0},
{0, 11},

Nano module D unit #2 37 of 114 www.elegantAlorg

http://www.elegantAI.org

{1, 11}
};

const int target[truthTable] [outputNodes] = {
{0},
{11},
{11},
{0}
b

void setup()

{
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode (buttonPin1, INPUT_PULLUP);
pinMode (buttonPin2, INPUT_PULLUP);
randomSeed (analogRead(4)) ;
for (a = 0; a < truthTable; a++)
{

randomisedTT[a]l = a;

void loop()

{
if (training == true)
{
for (int i = 0; i < hiddenNodes; i++)
{
for (int j = @; j <= inputNodes; j++)
{
hiddenWeights[j][i] = float(random(100))/100;
I
Nano module D unit #2 38 of 114

www.elegantAl.org

http://www.elegantAI.org

for (int 1 = 0; i < outputNodes; i++)

{
for (int j = @; j <= hiddenNodes; j++)
{
outputWeights[jl[i] = float(random(100))/100;
b
I

for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+

+)
{
for (a = 0; a < truthTable; a++)
{
b = random(truthTable);
c = randomisedTT[a];

randomisedTT[b];

Cy

randomisedTT [a]
randomisedTT[b]

for (b = 0; b < truthTable; b++)
{
a = randomisedTT[b];
for (i = @; i < hiddenNodes; i++)
{
sum = hiddenWeights[inputNodes] [i];
for (j = @; j < inputNodes; j++)

{

sum += input[al[j] * hiddenWeights[j][il;
}
hidden[i] =1 / (1 + exp(-sum));

Nano module D unit #2 39 of 114 www.elegantAlorg

http://www.elegantAI.org

I

training = false;
¥
buttons();

void buttons()

{
inputPinl = digitalRead(buttonPinl);
inputPin2 = digitalRead(buttonPin2);
if (inputPinl == LOW || inputPin2 == LOW)
{
digitalWrite(ledPin, HIGH);
b
else
{
digitalWrite(ledPin, LOW);
¥
b
", Notes

We could use another activation function.

Nano module D unit #2 40 of 114 www.elegantAlorg

http://www.elegantAI.org

Sketch D2.13 more weighted sums

Next, we calculate the weighted sums from the hidden layer to the
output layer and pass the sum through the activation function
(sigmoid).

Arduino sketch
const int ledPin = 13;
const int buttonPinl = 2;

const int buttonPin2

1
w

int inputPinl;
int inputPin2;
const int truthTable

. 1 1
N B
N - -

const int inputNodes
const int hiddenNodes

const int outputNodes

1
=

bool training = true;

float hiddenWeights[inputNodes + 1] [hiddenNodes];
float outputWeights[hiddenNodes + 1] [outputNodes];
int randomisedTT[truthTable];

int a;

long trainingCycle;

int b;

int c;

int 1i;

float sum;

int j;

float hidden[hiddenNodes];

float output[outputNodes];

const int input[truthTable] [inputNodes] = {
{0, 01},
{1, 0},

Nano module D unit #2 41 of 114 www.elegantAl.org

http://www.elegantAI.org

{ 0' 1 }’
{1, 11}
};

const int target[truthTablel] [outputNodes]
{01},
{11},
{11},
{0}
};

void setup()

{
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode(buttonPin1l, INPUT_PULLUP);
pinMode (buttonPin2, INPUT_PULLUP);
randomSeed (analogRead(4));
for (a = 0; a < truthTable; a++)
{

randomisedTT[a]l = a;

void loop()
{
if (training == true)
{
for (int i = @; i < hiddenNodes; i++)

{

for (int j = @; j <= inputNodes; j++)

{

hiddenWeights[j][i] = float(random(100))/100;

Nano module D unit #2 42 of 114

www.elegantAl.org

http://www.elegantAI.org

for (int i = 0; i < outputNodes; i++)

{
for (int j = 0; j <= hiddenNodes; j++)
{
outputWeights[j]l[i] = float(random(100))/100;
I
I

for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+

+)
{
for (a = @; a < truthTable; a++)
{
b = random(truthTable);
c = randomisedTT[al;

randomisedTT[al = randomisedTT[b];

randomisedTT[b] = c;

for (b = 0; b < truthTable; b++)

a = randomisedTT[b];
for (i = 0; i < hiddenNodes; i++)
{
sum = hiddenWeights[inputNodes] [i];
for (j = @; j < inputNodes; j++)
{
sum += input[al[j] * hiddenWeights[j][il;
¥
hidden[i] = 1 / (1 + exp(-sum));

Nano module D unit #2 43 of 114 www.elegantAlorg

http://www.elegantAI.org

for (i = @; i < outputNodes; i++)
{
sum = outputWeights[hiddenNodes] [i];
for (j = @; j < hiddenNodes; j++)
{
sum += hidden[j] * outputWeights[j][il;

}
output[i] =1 / (1 + exp(-sum));

I

training = false;
b
buttons();

void buttons()

{
inputPinl

digitalRead(buttonPinl);
inputPin2 = digitalRead(buttonPin2);
if (inputPinl == LOW || inputPin2 == LOW)
{

digitalWrite(ledPin, HIGH);

b
else
{
digitalWrite(ledPin, LOW);
b
¥
Nano module D unit #2 44 of 114

www.elegantAl.org

http://www.elegantAI.org

(il Sketch D2.14 error

We now have an output from our neural network. We have our target
values and we can compare them. The difference will be our error; we
will use MSE; the code is highlighted below. We initialised the error to

zero before we iterate through the training.

Arduino sketch

const int ledPin = 13;

const int buttonPinl = 2;
const int buttonPin2 = 3;
int inputPinl;

int inputPin2;

const int truthTable = 4;
const int inputNodes = 2;
const int hiddenNodes = 4;

const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1] [hiddenNodes];
float outputWeights[hiddenNodes + 1] [outputNodes];

int randomisedTT[truthTablel];
int a;

long trainingCycle;

int b;

int c;

int 1i;

float sum;

int j;

float hidden[hiddenNodes];
float output[outputNodes];

float error;

const int input[truthTable] [inputNodes] = {

Nano module D unit #2 45 of 114

www.elegantAlorg

http://www.elegantAI.org

{0, 01},

{1, 01},

{0, 11},

{1, 1}
b

const int target[truthTable] [outputNodes] = {
{0},
{11},
{11},
{0}
b

void setup()

{
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode (buttonPin1, INPUT_PULLUP);
pinMode (buttonPin2, INPUT_PULLUP);
randomSeed (analogRead(4)) ;
for (a = 0; a < truthTable; a++)
{

randomisedTT[a]l = a;

void loop()
{
if (training == true)
{
for (int 1 = @; i < hiddenNodes; i++)
{

for (int j = @; j <= inputNodes; j++)

Nano module D unit #2 46 of 114 www.elegantAlorg

http://www.elegantAI.org

hiddenWeights[j]l[i] = float(random(100))/100;

for (int 1 = 0; i < outputNodes; i++)

{
for (int j = @; j <= hiddenNodes; j++)
{
outputWeights[jl[i] = float(random(100))/100;
b
I

for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+

+)
{
for (a = 0; a < truthTable; a++)
{
b = random(truthTable);
c = randomisedTT[a];

randomisedTT[al = randomisedTTI[b];
randomisedTT[b] = c;

by

error = 0;

for (b = 0; b < truthTable; b++)
{
a = randomisedTT[b];
for (i = 0; i < hiddenNodes; i++)
{
sum = hiddenWeights[inputNodes] [i];
for (j = @; j < inputNodes; j++)
{

Nano module D unit #2 47 of 114 www.elegantAlorg

http://www.elegantAI.org

sum += inputlal [j] * hiddenWeights[j][il];
}
hidden[i] = 1 / (1 + exp(-sum));

for (i = @0; i < outputNodes; i++)
{
sum = outputWeights[hiddenNodes] [i];
for (j = @; j < hiddenNodes; j++)
{
sum += hidden[j] % outputWeights[j][il;
b
output[i] =1 / (1 + exp(-sum));

error += 0.5 *x (target[a] [i] - output[i]l) x (target[a]
[i] - output[il);

by

I

training = false;
¥
buttons();

void buttons()

{
inputPinl = digitalRead(buttonPinl);
inputPin2 = digitalRead(buttonPin2);
if (inputPinl == LOW || inputPin2 == LOW)
{
digitalWrite(ledPin, HIGH);
b
else
{

Nano module D unit #2 48 of 114 www.elegantAlorg

http://www.elegantAI.org

digitalWrite(ledPin, LOW);

Hit

, Notes

We are still at the feedforward stage of the process and are not
changing the weights. All we are doing is calculating the error at this
stage.

Nano module D unit #2 49 of 114 www.elegantAlorg

http://www.elegantAI.org

Sketch D2.15 delta

Now we need to go back through the neural network and tweak the
weights. First off are the weights between the ouftput and the hidden
layer. The question is by how much. So we calculate the delta error for the
output. The equation is & (delta) = (target - actual) * actual
* (1 — actual). We can do this easily for the output as we have the

target and actual.

Arduino sketch

const int ledPin = 13;

const int buttonPinl = 2;
const int buttonPin2 = 3;
int inputPinl;
int inputPin2;
const int truthTable = 4;
const int inputNodes = 2;

const int hiddenNodes = 4;
const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1] [hiddenNodes];
float outputWeights[hiddenNodes + 1] [outputNodes];

int randomisedTT[truthTablel];
int a;

long trainingCycle;

int b;

int c;

int 1i;

float sum;

int j;

float hidden[hiddenNodes];
float output[outputNodes];
float error;

float outputDeltaloutputNodes];

Nano module D unit #2 50 of 114

www.elegantAlorg

http://www.elegantAI.org

const int input[truthTable] [inputNodes] = {
{0, 01},
{1, 0},
{0,113,
{1, 1}
};

const int target[truthTable] [outputNodes] = {
{01},
{11},
{11},
{0}
i

void setup()

{
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode (buttonPinl, INPUT_PULLUP);
pinMode (buttonPin2, INPUT_PULLUP);
randomSeed (analogRead(4));
for (a = @0; a < truthTable; a++)
{

randomisedTT[al]l = a;

void loop()

{
if (training == true)
{

for (int 1 = 0; i < hiddenNodes; i++)

Nano module D unit #2 51 of 114 www.elegantAlorg

http://www.elegantAI.org

for (int j = 0; j <= inputNodes; j++)
{
hiddenWeights[j]l[i] = float(random(100))/100;

for (int 1 = @; i < outputNodes; i++)

{
for (int j = @; j <= hiddenNodes; j++)
{
outputWeights[j]l[i] = float(random(100))/100;
}
}

for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+

+)
{
for (a = 0; a < truthTable; a++)
{
b = random(truthTable);
c = randomisedTT[al;

randomisedTT[a] = randomisedTTI[b];
randomisedTT[b] = c;

by

error = 0;

for (b = 0; b < truthTable; b++)
{
a = randomisedTT[b];
for (i = @; i < hiddenNodes; i++)
{
sum = hiddenWeights[inputNodes] [i];

Nano module D unit #2 52 of 114 www.elegantAlorg

http://www.elegantAI.org

for (j = @; j < inputNodes; j++)

{

sum += input[al[j] * hiddenWeights[j][il;
¥
hidden[i] =1 / (1 + exp(-sum));

for (i = 0; i < outputNodes; i++)
{
sum = outputWeights[hiddenNodes] [i];
for (j = 0; j < hiddenNodes; j++)
{
sum += hidden[j] * outputWeights([j][il;
b
output[i] =1 / (1 + exp(-sum));

outputDeltal[i] = (target[al [i] - output[i]) * output[i]
* (1 - outputl[il);

error += 0.5 *x (target[a] [i] - output[i]l) x (target[al
[i] - output[il);

by

I

training = false;
¥
buttons();

void buttons()

{
inputPinl

digitalRead(buttonPinl);
inputPin2 = digitalRead(buttonPin2);

if (inputPinl == LOW || inputPin2 == LOW)
{

Nano module D unit #2 53 of 114 www.elegantAlorg

http://www.elegantAI.org

digitalWrite(ledPin, HIGH);
¥

else

{
digitalWrite(ledPin, LOW);

Hithb

, Notes

The first step in gradient descent is to calculate a value called the delta
for each neuron. The delta reflects the magnitude of the error; the
greater the difference between the target value for the neuron and its
actual output, the smaller the change delta = (target - output) x*
output * (1 - output).

Nano module D unit #2 54 of 114 www.elegantAlorg

http://www.elegantAI.org

Tl Sketch D2.16 delta to hidden

Here we will calculate the hidden delta, which is a bit more tricky as we
have no target to compare with. We keep a running total (sum) of the
output weights and output delta (which we have already
calculated).

Arduino sketch

const int ledPin = 13;

const int buttonPinl = 2;
const int buttonPin2 = 3;
int inputPinl;

int inputPin2;

const int truthTable = 4;
const int inputNodes = 2;
const int hiddenNodes = 4;

const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1] [hiddenNodes];
float outputWeights[hiddenNodes + 1] [outputNodes];
int randomisedTT[truthTablel];

int a;

long trainingCycle;

int b;

int c;

int 1i;

float sum;

int j;

float hidden[hiddenNodes];

float output[outputNodes];

float error;

float outputDeltaloutputNodes];

float hiddenDeltal[hiddenNodes];

Nano module D unit #2 55 of 114 www.elegantAl.org

http://www.elegantAI.org

const int input[truthTable] [inputNodes] = {
{0, 01},
{1, 0},
{0,113,
{1, 1}
};

const int target[truthTable] [outputNodes] = {
{01},
{11},
{11},
{0}
i

void setup()

{
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode (buttonPinl, INPUT_PULLUP);
pinMode (buttonPin2, INPUT_PULLUP);
randomSeed (analogRead(4));
for (a = @0; a < truthTable; a++)
{

randomisedTT[al]l = a;

void loop()

{
if (training == true)
{

for (int 1 = 0; i < hiddenNodes; i++)

Nano module D unit #2 56 of 114 www.elegantAlorg

http://www.elegantAI.org

for (int j = 0; j <= inputNodes; j++)
{
hiddenWeights[j]l[i] = float(random(100))/100;

for (int 1 = @; i < outputNodes; i++)

{
for (int j = @; j <= hiddenNodes; j++)
{
outputWeights[j]l[i] = float(random(100))/100;
}
}

for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+

+)
{
for (a = 0; a < truthTable; a++)
{
b = random(truthTable);
c = randomisedTT[al;

randomisedTT[a] = randomisedTTI[b];
randomisedTT[b] = c;

by

error = 0;

for (b = 0; b < truthTable; b++)
{
a = randomisedTT[b];
for (i = @; i < hiddenNodes; i++)
{
sum = hiddenWeights[inputNodes] [i];

Nano module D unit #2 57 of 114 www.elegantAlorg

http://www.elegantAI.org

for (j = @; j < inputNodes; j++)

{

sum += input[al[j] * hiddenWeights[j][il;
¥
hidden[i] =1 / (1 + exp(-sum));

for (i = 0; i < outputNodes; i++)
{
sum = outputWeights[hiddenNodes] [i];
for (j = 0; j < hiddenNodes; j++)
{
sum += hidden[j] * outputWeights([j][il;
b
output[i] =1 / (1 + exp(-sum));

outputDeltal[i] = (target[al [i] - output[i]) * output[i]
* (1 - outputlil);

error += 0.5 *x (target[a] [i] - output[i]l) x (target[al
[i] - output[il);

by

for (i = @; i < hiddenNodes; i++)
{
sum = 0;

for (j = 0; j < outputNodes; j++)

{
sum += outputWeights[il[j] * outputDeltaljl;
}
hiddenDelta[i] = sum % hidden[i] * (1 - hidden[i]);

by

training = false;

Nano module D unit #2 58 of 114 www.elegantAlorg

http://www.elegantAI.org

}
buttons();

void buttons()

{
inputPinl = digitalRead(buttonPinl);
inputPin2 = digitalRead(buttonPin2);
if (inputPinl == LOW || inputPin2 == LOW)
{
digitalWrite(ledPin, HIGH);
b
else
{
digitalWrite(ledPin, LOW);
¥
b
", Notes

We now have the hidden as well as the output delta difference or error.
We want fo update the weights between the input through to the output
layer.

Calculating the delta at the hidden layer becomes slightly more involved as
there is no target to measure against. Instead, the magnitude of the error
for each hidden neuron is derived from the relationship between the
weights and the delta that was calculated for the output layer. For each
hidden neuron, the code steps through all of the output connections,
multiplying the weights by the deltas and keeping a running fotal: sum +=
output weights * output delta.

Nano module D unit #2 59 of 114 www.elegantAlorg

http://www.elegantAI.org

R
[7y e

e
|

Sketch D2.17 updating the hidden weights

Update the input to hidden weights. We introduce the learning rate so
that we can manage how much we change these weights. Also, add in the
momentum; otherwise, it may well get stuck on some local minimum.

Arduino sketch

const int ledPin = 13;

const int buttonPinl = 2;
const int buttonPin2 = 3;
int inputPinl;

int inputPin2;

const int truthTable = 4;
const int inputNodes = 2;
const int hiddenNodes = 4;
const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1] [hiddenNodes];
float outputWeights[hiddenNodes + 1] [outputNodes];
int randomisedTT[truthTablel];

int a;

long trainingCycle;

int b;

int c;

int 1i;

float sum;

int j;

float hidden[hiddenNodes];

float output[outputNodes];

float error;

float outputDeltaloutputNodes];

float hiddenDelta[hiddenNodes];

float changeHiddenWeights[inputNodes + 1] [hiddenNodes];

Nano module D unit #2 60 of 114 www.elegantAl.org

http://www.elegantAI.org

float learningRate = 0.5;

float momentum = 0.9;

const int input[truthTable] [inputNodes] = {
{0, 01},
{1, 01},
{0, 11},
{1, 1}
b

const int target[truthTablel [outputNodes] = {
{01},
{11},
{11},
{0}
};

void setup()

{
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode(buttonPin1l, INPUT_PULLUP);
pinMode (buttonPin2, INPUT_PULLUP);
randomSeed (analogRead(4));
for (a = 0; a < truthTable; a++)
{

randomisedTT[a]l = a;

void loop()
{

if (training == true)

Nano module D unit #2 61 of 114 www.elegantAlorg

http://www.elegantAI.org

for (int i = @; i < hiddenNodes; i++)

{
for (int j = 0; j <= inputNodes; j++)
{
hiddenWeights[j][i] = float(random(100))/100;
}
}

for (int 1 = 0; i < outputNodes; i++)

{
for (int j = 0; j <= hiddenNodes; j++)
{
outputWeights[j]l[i] = float(random(100))/100;
I
I

for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+

+)
{
for (a = @; a < truthTable; a++)
{
b = random(truthTable);
c = randomisedTT[al;

randomisedTT [a]
randomisedTT [b]
}

error = 0;

randomisedTT [b];

Gy

for (b = 0; b < truthTable; b++)
{
a = randomisedTT[b];

for (i = @; i < hiddenNodes; i++)

Nano module D unit #2 62 of 114 www.elegantAlorg

http://www.elegantAI.org

sum = hiddenWeights[inputNodes] [i];
for (j = @; j < inputNodes; j++)

{

sum += input[al [j] * hiddenWeights[j][il;
}
hidden[i] = 1 / (1 + exp(-sum));

for (i = @; i < outputNodes; i++)
{
sum = outputWeights[hiddenNodes] [i];
for (j = @; j < hiddenNodes; j++)
{
sum += hidden[j] * outputWeights[j][il;
¥
output[i] =1 / (1 + exp(-sum));

outputDeltal[i] = (target[a] [i] - output[i]) * output[i]
x (1 - output[il);

error += 0.5 x (targetl[al[i] - output[i]l) * (targetlal
[i] - output[i]);

¥

for (i = 0; i < hiddenNodes; i++)
{
sum = 0;

for (j = @; j < outputNodes; j++)

{
sum += outputWeights[i]l [j] * outputDeltalj];
¥
hiddenDeltal[i]l = sum * hidden[i] % (1 - hidden[i]);

Nano module D unit #2 63 of 114 www.elegantAlorg

http://www.elegantAI.org

for (i = ©0; i < hiddenNodes; i++)

{

changeHiddenWeights [inputNodes] [i] = learningRate x*
hiddenDelta[i] + momentum % changeHiddenWeights[inputNodes] [i];

hiddenWeights [inputNodes] [i] +=
changeHiddenWeights[inputNodes] [i];

for (j = 0; j < inputNodes; j++)
{

changeHiddenWeights[j] [i] = learningRate * input[a]
[j1 * hiddenDelta[il + momentum * changeHiddenWeights[j][il];

hiddenWeights[j]l[i] += changeHiddenWeights[j]I[il;

I

training = false;
¥
buttons();

void buttons()

{
inputPinl = digitalRead(buttonPinl);
inputPin2 = digitalRead(buttonPin2);
if (inputPinl == LOW || inputPin2 == LOW)
{
digitalWrite(ledPin, HIGH);
¥
else
{
digitalWrite(ledPin, LOW);
b
¥

Nano module D unit #2 64 of 114 www.elegantAlorg

http://www.elegantAI.org

Hit

, Notes
There is a whole lot of code going on.

Nano module D unit #2 65 of 114 www.elegantAl.org

http://www.elegantAI.org

Sketch D2.18 change the output weights

Now to do the same for the hidden to output weights.

Arduino sketch
const int ledPin = 13;

const int buttonPinl

1l
N

const int buttonPin2

1
w

int inputPinl;
int inputPin2;
const int truthTable

. 1 1
N B
N - -

const int inputNodes
const int hiddenNodes

const int outputNodes

1
=

bool training = true;

float hiddenWeights[inputNodes + 1] [hiddenNodes];
float outputWeights[hiddenNodes + 1] [outputNodes];
int randomisedTT[truthTable];

int a;

long trainingCycle;

int b;

int c;

int 1i;

float sum;

int j;

float hidden[hiddenNodes];

float output[outputNodes];

float error;

float outputDeltaloutputNodes];

float hiddenDelta[hiddenNodes];

float changeHiddenWeights[inputNodes + 1] [hiddenNodes];
float learningRate = 0.5;

float momentum = 0.9;

Nano module D unit #2 66 of 114 www.elegantAlorg

http://www.elegantAI.org

float changeOutputWeights[hiddenNodes + 1] [outputNodes];

const int input[truthTable] [inputNodes] = {
{0, 01},
{1, 0},
{0, 11},
{1, 1}
i

const int target[truthTable] [outputNodes] = {
{0},
{11},
{11},
{0}
b

void setup()

{
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode (buttonPin1, INPUT_PULLUP);
pinMode (buttonPin2, INPUT_PULLUP);
randomSeed (analogRead(4)) ;
for (a = 0; a < truthTable; a++)
{

randomisedTT[a]l = a;

void loop()
{

if (training == true)

{

Nano module D unit #2 67 of 114 www.elegantAlorg

http://www.elegantAI.org

for (int 1 = @; i < hiddenNodes; i++)

{
for (int j = @; j <= inputNodes; j++)
{
hiddenWeights[j]l[i] = float(random(100))/100;
I
I

for (int 1 = @; i < outputNodes; i++)

{
for (int j = @; j <= hiddenNodes; j++)
{
outputWeights[jl[i] = float(random(100))/100;
b
I

for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+

+)
{
for (a = 0; a < truthTable; a++)
{
b = random(truthTable);
c = randomisedTT[a];

randomisedTT[al = randomisedTTI[b];
randomisedTT[b] = c;

by

error = 0;

for (b = 0; b < truthTable; b++)
{
a = randomisedTTI[b];
for (i = 0; i < hiddenNodes; i++)

{

Nano module D unit #2 68 of 114 www.elegantAlorg

http://www.elegantAI.org

sum = hiddenWeights[inputNodes] [i];
for (j = 0; j < inputNodes; j++)

{

sum += inputlal [j] * hiddenWeights[j][il];
}
hidden[i] = 1 / (1 + exp(-sum));

for (i = @0; i < outputNodes; i++)
{
sum = outputWeights[hiddenNodes] [i];
for (j = @; j < hiddenNodes; j++)
{
sum += hidden[j] % outputWeights[j][il;
b
output[i] =1 / (1 + exp(-sum));

outputDeltal[i] = (target[a] [i] - output[i]) * output[i]
* (1 - outputlil);

error += 0.5 x (targetl[al[i] - output[il]) * (targetl[al
[i] - output[i]);

by

for (i = @; i < hiddenNodes; i++)
{
sum = 0;

for (j = @; j < outputNodes; j++)

{
sum += outputWeights[il[j] * outputDeltalj];
}
hiddenDelta[i] = sum % hidden[i] * (1 - hidden[i]);

for (i = ©0; i < hiddenNodes; i++)

Nano module D unit #2 69 of 114 www.elegantAlorg

http://www.elegantAI.org

changeHiddenWeights [inputNodes] [i] = learningRate x*
hiddenDeltal[i] + momentum % changeHiddenWeights[inputNodes] [i];

hiddenWeights [inputNodes] [i] +=
changeHiddenWeights [inputNodes] [i];

for (j = @; j < inputNodes; j++)
{

changeHiddenWeights[j] [i] = learningRate * input[a]
[j1 % hiddenDeltal[i]l + momentum * changeHiddenWeights[j][il;

hiddenWeights[j][i] += changeHiddenWeights[j][il;

for (i = @; i < outputNodes; i++)
{

changeOutputWeights[hiddenNodes] [i] = learningRate *
outputDeltal[i] + momentum * changeOutputWeights[hiddenNodes] [i];

outputWeights[hiddenNodes] [i] +=
changeOutputWeights [hiddenNodes] [i];

for (j = @; j < hiddenNodes; j++)
{

changeOutputWeights[j][i] = learningRate * hidden[j]
* outputDeltal[i] + momentum * changeOutputWeights[jl[il;

outputWeights[j] [i] += changeOutputWeights[j][i];

}

training = false;
¥
buttons();

Nano module D unit #2 70 of 114 www.elegantAlorg

http://www.elegantAI.org

void buttons()

{
inputPinl = digitalRead(buttonPinl);
inputPin2 = digitalRead(buttonPin2);
if (inputPinl == LOW || inputPin2 == LOW)
{
digitalWrite(ledPin, HIGH);
b
else
{
digitalWrite(ledPin, LOW);
b
¥
", Notes

This may take some working through.

Nano module D unit #2 71 of 114 www.elegantAlorg

http://www.elegantAI.org

ill Sketch D2.19 seeing the error

What is the error? We can send the final error to the serial monitor. This
is the final error after 10000 iterations. Press the reset button to see it
train a number of times.

Arduino sketch

const int ledPin = 13;

const int buttonPinl = 2;
const int buttonPin2 = 3;
int inputPinl;

int inputPin2;

const int truthTable = 4;
const int inputNodes = 2;
const int hiddenNodes = 4;
const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1] [hiddenNodes];
float outputWeights[hiddenNodes + 1] [outputNodes];
int randomisedTT[truthTablel];

int a;

long trainingCycle;

int b;

int c;

int 1i;

float sum;

int j;

float hidden[hiddenNodes];

float output[outputNodes];

float error;

float outputDeltaloutputNodes];

float hiddenDelta[hiddenNodes];

float changeHiddenWeights[inputNodes + 1] [hiddenNodes];

Nano module D unit #2 72 of 114 www.elegantAl.org

http://www.elegantAI.org

float learningRate = 0.5;
float momentum = 0.9;

float changeOutputWeights[hiddenNodes + 1] [outputNodes];

const int input[truthTable] [inputNodes] = {
{0, 01},
{1, 0},
{0,113,
{1, 1}
};

const int target[truthTable] [outputNodes] = {
{01},
{11},
{11},
{0}
i

void setup()

{
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode (buttonPinl, INPUT_PULLUP);
pinMode (buttonPin2, INPUT_PULLUP);
randomSeed (analogRead(4));
for (a = @0; a < truthTable; a++)
{

randomisedTT[al]l = a;

void loop()
{

Nano module D unit #2 73 of 114 www.elegantAlorg

http://www.elegantAI.org

if (training == true)
{
for (int i = @; i < hiddenNodes; i++)
{
for (int j = @; j <= inputNodes; j++)
{
hiddenWeights[j] [i] = float(random(100))/100;

for (int 1 = @; i < outputNodes; i++)

{
for (int j = @; j <= hiddenNodes; j++)
{
outputWeights[j]l[i] = float(random(100))/100;
}
}

for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+

+)
{
for (a = 0; a < truthTable; a++)
{
b = random(truthTable);
c = randomisedTT[al;

randomisedTT[b];

C

randomisedTT [a]
randomisedTT[b]
}

error = 0;

for (b = 0; b < truthTable; b++)
{

a = randomisedTT[b];

Nano module D unit #2 74 of 114 www.elegantAlorg

http://www.elegantAI.org

for (i = ©0; i < hiddenNodes; i++)

{
sum = hiddenWeights[inputNodes] [i];
for (j = @; j < inputNodes; j++)

{

sum += input[al[j] * hiddenWeights[j][il;
¥
hidden[i] =1 / (1 + exp(-sum));

for (i = 0; i < outputNodes; i++)
{
sum = outputWeights[hiddenNodes] [i];
for (j = 0; j < hiddenNodes; j++)
{
sum += hidden[j] * outputWeights([j][il;
b
output[i] =1 / (1 + exp(-sum));

outputDeltal[i] = (target[al [i] - output[i]) * output[i]
* (1 - outputlil);

error += 0.5 *x (target[a] [i] - output[i]l) x (target[al
[i] - output[il);

by

for (i = @; i < hiddenNodes; i++)
{
sum = 0;

for (j = 0; j < outputNodes; j++)

{
sum += outputWeights[il[j] * outputDeltalj];
¥
hiddenDelta[i] = sum % hidden[i] * (1 - hidden[i]);

Nano module D unit #2 75 of 114 www.elegantAlorg

http://www.elegantAI.org

for (i = @; i < hiddenNodes; i++)

{

changeHiddenWeights [inputNodes] [i] = learningRate *
hiddenDelta[i] + momentum *x changeHiddenWeights[inputNodes] [i];

hiddenWeights[inputNodes] [i] +=
changeHiddenWeights [inputNodes] [i];

for (j = @; j < inputNodes; j++)
{

changeHiddenWeights[j] [i] = learningRate * input[a]
[j1 * hiddenDeltal[i] + momentum * changeHiddenWeights[j][i]l;

hiddenWeights[j][i] += changeHiddenWeights[j][i];

for (i = @; i < outputNodes; i++)

{

changeOutputWeights [hiddenNodes] [i] = learningRate x*
outputDeltali] + momentum * changeOutputWeights[hiddenNodes] [i];

outputWeights [hiddenNodes] [i] +=
changeOutputWeights [hiddenNodes] [i];

for (j = @; j < hiddenNodes; j++)

{

changeOutputWeights[j] [i] = learningRate *x hidden[j]
* outputDeltal[i] + momentum * changeOutputWeights([j][il;

outputWeights[j]l[i] += changeOutputWeights[j][i];

}
training = false;
Serial.print(" error = ");

Serial.println(error, 5);

Nano module D unit #2 76 of 114 www.elegantAlorg

http://www.elegantAI.org

buttons();

void buttons()
{
inputPinl = digitalRead(buttonPinl);
inputPin2 = digitalRead(buttonPin2);
if (inputPinl == LOW || inputPin2 == LOW)
{
digitalWrite(ledPin, HIGH);
b
else

{
digitalWrite(ledPin, LOW);

Hithb

, Notes

The final error is around 0.00004 and 0.00005, which is plenty low

enough.

Nano module D unit #2 77 of 114

www.elegantAl.org

http://www.elegantAI.org

Figure D2.19

ANN.ino
soa HLUUCHIIMC LY ICo L) J L4l f= CHUNYCH AU e LY eo L) LLd g
132 }
133 ¥
134
135 for (i = @; i < outputNodes; i++)
136 {
137 changeOutputWeights [hiddenNodes] [i] = learningRate * outputDelta[i] + momentum % changeOutputWeights[hiddenNodes] [i];
138 outputWeights [hiddenNodes] [i] += changeOutputWeights[hiddenNodes] [i];
139 for (j = @; j < hiddenNodes; j++)
140 {
141 changeOutputWeights[j][i] = learningRate * hidden[j] * outputDelta[i] + momentum * changeOutputWeights[j][i];
142 outputWeights[j][i] += changeOutputWeights[j][il;
143 }
144 }
145 }
146 ¥
147 training = false;
148 Serial.print(" error = "); |
149 Serial.println(error, 5);
150 '3
Output Serial Monitor X O =
Messa 0 send message to 'Arduino Nano 33 BLE' on '/dev/cu.usbmodem110 No Line Ending ¥ 9600 baud v
error = 0.00005
error = 0.00004
error = 0.00004
error = 0.00005

Nano module D unit #2 78 of 114 www.elegantAlorg

http://www.elegantAI.org

R
[7y e

e
|

Sketch D2.20 RGB LED training finished

One problem we have is that the training takes a few seconds, but we
have no indication as to when the training is finished. We can do something
about that by using the RGB LED that is built info the board.

Arduino sketch
const int ledPin = 13;

const int buttonPinl

1 1l
w N

const int buttonPin2
int inputPinl;
int inputPin2;
const int truthTable

1 1l
1

N B
N - -n

const int inputNodes
const int hiddenNodes

const int outputNodes

1l
=

bool training = true;

float hiddenWeights[inputNodes + 1] [hiddenNodes];
float outputWeights[hiddenNodes + 1] [outputNodes];
int randomisedTT[truthTablel];

int a;

long trainingCycle;

int b;

int c;

int 1i;

float sum;

int j;

float hidden[hiddenNodes];

float output[outputNodes];

float error;

float outputDeltaloutputNodes];

float hiddenDelta[hiddenNodes];

float changeHiddenWeights[inputNodes + 1] [hiddenNodes];

Nano module D unit #2 79 of 114 www.elegantAl.org

http://www.elegantAI.org

float learningRate = 0.5;
float momentum = 0.9;

float changeOutputWeights[hiddenNodes + 1] [outputNodes];

const int input[truthTable] [inputNodes] = {
{0, 01},
{1, 0},
{0,113,
{1, 1}
};

const int target[truthTable] [outputNodes] = {
{01},
{11},
{11},
{0}
i

void setup()

{
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode (LEDR, OUTPUT);
pinMode (LEDG, OUTPUT);
pinMode(buttonPinl, INPUT_PULLUP);
pinMode (buttonPin2, INPUT_PULLUP);
randomSeed (analogRead(4));
for (a = 0; a < truthTable; a++)
{

randomisedTT[a]l = a;

Nano module D unit #2 80 of 114 www.elegantAlorg

http://www.elegantAI.org

void loop()

{
if (training == true)
{
digitalWrite(LEDR, LOW);
digitalWrite(LEDG, HIGH);
for (int 1 = @; i < hiddenNodes; i++)
{
for (int j = 0; j <= inputNodes; j++)
{
hiddenWeights[j][i] = float(random(100))/100;
}
I
for (int 1 = @; i < outputNodes; i++)
{
for (int j = 0; j <= hiddenNodes; j++)
{
outputWeights[jl[i] = float(random(100))/100;
b
I
for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+
+)
{
for (a = 0; a < truthTable; a++)
{
b = random(truthTable);
c = randomisedTT[al;

randomisedTT[al = randomisedTTI[b];
randomisedTT[b] = c;

by

error = 0;

Nano module D unit #2 81 of 114 www.elegantAlorg

http://www.elegantAI.org

for (b = 0; b < truthTable; b++)
{
a = randomisedTT[b];
for (i = 0; i < hiddenNodes; i++)
{
sum = hiddenWeights[inputNodes] [i];
for (j = 0; j < inputNodes; j++)

{

sum += inputlal [j] * hiddenWeights[j][il];
}
hidden[i] = 1 / (1 + exp(-sum));

for (i = @; i < outputNodes; i++)
{
sum = outputWeights[hiddenNodes] [i];
for (j = @; j < hiddenNodes; j++)
{
sum += hidden[j] * outputWeights[j][il;
b
output[i] =1 / (1 + exp(-sum));

outputDelta[i] = (target[a] [i] - output[i]) * output[i]
* (1 - outputlil);

error += 0.5 x (targetl[al[i] - output[il]) * (targetl[al
[i] - output[i]);

by

for (i = @; i < hiddenNodes; i++)

{
sum = 0;
for (j = 0; j < outputNodes; j++)
{

Nano module D unit #2 82 of 114 www.elegantAlorg

http://www.elegantAI.org

sum += outputWeights[il[j] * outputDeltaljl;

}
hiddenDelta[i]l = sum * hidden[i] * (1 - hidden[il);

for (1 = @; i < hiddenNodes; i++)
{

changeHiddenWeights [inputNodes] [i] = learningRate x*
hiddenDeltal[i] + momentum % changeHiddenWeights[inputNodes] [i];

hiddenWeights [inputNodes] [i] +=
changeHiddenWeights [inputNodes] [i];

for (j = @; j < inputNodes; j++)
{

changeHiddenWeights[j] [i] = learningRate * input[a]
[j1 * hiddenDeltal[i] + momentum * changeHiddenWeights[j][i];

hiddenWeights[j][i] += changeHiddenWeights[j][il;

for (i = @; i < outputNodes; i++)
{

changeOutputWeights[hiddenNodes] [i] = learningRate *
outputDeltal[i] + momentum *x changeOutputWeights[hiddenNodes] [i];

outputWeights[hiddenNodes] [i] +=
changeOutputWeights [hiddenNodes] [i];

for (j = @; j < hiddenNodes; j++)
{

changeOutputWeights[j][i] = learningRate * hidden[j]
* outputDeltal[i] + momentum * changeOutputWeights[jl[il;

outputWeights[j] [i] += changeOutputWeights[j][i];

Nano module D unit #2 83 of 114 www.elegantAlorg

http://www.elegantAI.org

training = false;
digitalWrite(LEDR, HIGH);
digitalWrite(LEDG, LOW);
Serial.print(" error = ");
Serial.println(error, 5);
b
buttons();

void buttons()

{
inputPinl = digitalRead(buttonPinl);
inputPin2 = digitalRead(buttonPin2);
if (inputPinl == LOW || inputPin2 == LOW)
{
digitalWrite(ledPin, HIGH);
b
else
{
digitalWrite(ledPin, LOW);
b
¥
", Notes

It gives you a visual clue when training is finished.

Nano module D unit #2 84 of 114 www.elegantAlorg

http://www.elegantAI.org

7l Sketch D2.21 truth table buttons

Now that the training has finished, we can predict the outcome for each
row of the truth table. We have the final weights (hidden and output), so
we can deftermine the final output for a particular set of inputs. We will
use the variable a fo keep track of which set of inputs we want. Before we
launch into the predicting business, we need to determine which
combination of buttons relate to which part of the input[] array.

I Remove:

if (inputPinl == LOW || inputPin2 == LOW)
{

digitalWrite(ledPin, HIGH);
I

else

{
digitalWrite(ledPin, LOW);
I

Arduino sketch

const int ledPin = 13;

const int buttonPinl = 2;
const int buttonPin2 = 3;
int inputPinl;
int inputPin2;
const int truthTable = 4;

const int inputNodes
const int hiddenNodes = 4;
const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1] [hiddenNodes];
float outputWeights[hiddenNodes + 1] [outputNodes];
int randomisedTT[truthTablel];

int a;

long trainingCycle;

int b;

Nano module D unit #2 85 of 114 www.elegantAl.org

http://www.elegantAI.org

int c;
int 1i;
float
int j;
float
float
float
float
float
float
float
float
float

const
{ o,
{1,
{ o,
{1,
b

const
{0
{1
{1
{0
e

sum;

hidden[hiddenNodes];

output [outputNodes];

error;

outputDeltaloutputNodes];
hiddenDelta[hiddenNodes];

changeHiddenWeights [inputNodes + 1] [hiddenNodes];
learningRate = 0.5;

momentum = 0.9;

changeOutputWeights[hiddenNodes + 1] [outputNodes];

int input[truthTablel] [inputNodes] = {
0},
0},
11,
1}

int target[truthTable] [outputNodes] = {
I
H
b
+

void setup()

{

Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode(LEDR, OUTPUT);

Nano module D unit #2 86 of 114 www.elegantAlorg

http://www.elegantAI.org

pinMode (LEDG, OUTPUT);

pinMode (buttonPinl, INPUT_PULLUP);
pinMode (buttonPin2, INPUT_PULLUP);
randomSeed (analogRead(4));

for (a = @0; a < truthTable; a++)

{

randomisedTT[al]l = a;

void loop()

{
if (training == true)
{

digitalWrite(LEDR, LOW);

digitalWrite(LEDG, HIGH);

for (int i = @; i < hiddenNodes; i++)

{
for (int j = @; j <= inputNodes; j++)
{

hiddenWeights[j][i] = float(random(100))/100;

}

}

for (int 1 = 0; i < outputNodes; i++)

{
for (int j = 0; j <= hiddenNodes; j++)
{

outputWeights[jl[i] = float(random(100))/100;

}

I

Nano module D unit #2 87 of 114

www.elegantAl.org

http://www.elegantAI.org

for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+

+)

for

b

C

(a = 0; a < truthTable; a++)

random(truthTable);

randomisedTT[al;

randomisedTT[a] = randomisedTTI[b];

randomisedTT[b] = c;

}
error = 0;
for (b = 0; b < truthTable; b++)
{
a = randomisedTT[b];

for (i = @; i < hiddenNodes; i++)

{

sum = hiddenWeights[inputNodes] [i];
for (j = @0; j < inputNodes; j++)
{
sum += inputlal [j] * hiddenWeights[jl[il];
b
hidden[i] = 1 / (1 + exp(-sum));

for (i = @; i < outputNodes; i++)

{

sum = outputWeights[hiddenNodes] [i];
for (j = @; j < hiddenNodes; j++)
{
sum += hidden[j] * outputWeights[j][il;

¥
output[i] =1 / (1 + exp(-sum));

Nano module D unit #2 88 of 114 www.elegantAlorg

http://www.elegantAI.org

outputDeltal[i] = (target[al [i] - output[i]) * output[i]
* (1 - outputl[il);

error += 0.5 *x (target[a] [i] - output[i]l) x (target[al
[i] - output[il);

by

for (i = @; i < hiddenNodes; i++)
{
sum = 0;

for (j = 0; j < outputNodes; j++)

{
sum += outputWeights[il[j] * outputDeltalj];
¥
hiddenDelta[i] = sum % hidden[i] % (1 - hidden[i]);

for (i = @; i < hiddenNodes; i++)
{

changeHiddenWeights [inputNodes] [i] = learningRate x*
hiddenDeltal[i] + momentum % changeHiddenWeights[inputNodes] [i];

hiddenWeights [inputNodes] [i] +=
changeHiddenWeights [inputNodes] [i];

for (j = @; j < inputNodes; j++)
{

changeHiddenWeights[j] [i] = learningRate * input[a]
[j1 * hiddenDeltal[i] + momentum * changeHiddenWeights[j][i];

hiddenWeights[j][i] += changeHiddenWeights[j]I[il;

for (i = @; i < outputNodes; i++)
{

changeOutputWeights[hiddenNodes] [i] = learningRate *
outputDeltal[i] + momentum * changeOutputWeights[hiddenNodes] [i];

Nano module D unit #2 89 of 114 www.elegantAlorg

http://www.elegantAI.org

outputWeights [hiddenNodes] [i] +=
changeOutputWeights [hiddenNodes] [i];

for (j = @; j < hiddenNodes; j++)
{

changeOutputWeights[j] [i] = learningRate * hidden[j]
* outputDeltal[i] + momentum *x changeOutputWeights([j][il;

outputWeights[j][i] += changeOutputWeights[j][i];

I
training = false;
digitalWrite(LEDR, HIGH);
digitalWrite(LEDG, LOW);
Serial.print(" error = ");
Serial.println(error, 5);
b
buttons();

void buttons()

{
inputPinl = digitalRead(buttonPinl);
inputPin2 = digitalRead(buttonPin2);
if (inputPinl == LOW && inputPin2 == HIGH)

{
a =1;
b
else if (inputPinl == HIGH && inputPin2 == LOW)
{
a = 2;
¥

else if (inputPinl == LOW && inputPin2 == LOW)

Nano module D unit #2 90 of 114 www.elegantAlorg

http://www.elegantAI.org

a = 3;
b
else
{
a = 0;
I
b
", Notes

The buttons arent connected to the LED anymore.

Nano module D unit #2 91 of 114 www.elegantAlorg

http://www.elegantAI.org

R
[7y e

e
|

Sketch D2.22 inputs to hidden

We can now predict the results by running the input array through the
neural network. The input array passes through the hidden layer, then
through to the output layer, at which point it passes through the sigmoid
activation function to give us a value between @ and 1.

First inputs to the hidden layer.

Arduino sketch

const int ledPin = 13;

const int buttonPinl = 2;
const int buttonPin2 = 3;
int inputPinl;
int inputPin2;
const int truthTable = 4;
const int inputNodes = 2;

const int hiddenNodes = 4;
const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1] [hiddenNodes];
float outputWeights[hiddenNodes + 1] [outputNodes];
int randomisedTT[truthTablel];

int a;

long trainingCycle;

int b;

int c;

int 1i;

float sum;

int j;

float hidden[hiddenNodes];

float output[outputNodes];

float error;

float outputDeltaloutputNodes];

Nano module D unit #2 92 of 114 www.elegantAl.org

http://www.elegantAI.org

float hiddenDelta[hiddenNodes];

float changeHiddenWeights[inputNodes + 1] [hiddenNodes];
float learningRate = 0.5;

float momentum = 0.9;

float changeOutputWeights[hiddenNodes + 1] [outputNodes];

const int input[truthTable] [inputNodes] = {
{0, 01},
{1, 01},
{0, 11},
{1, 1}
b

const int target[truthTablel [outputNodes] = {
{01},
{11},
{11},
{0}
};

void setup()

{
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode (LEDR, OUTPUT);
pinMode (LEDG, OUTPUT);
pinMode(buttonPinl, INPUT_PULLUP);
pinMode(buttonPin2, INPUT_PULLUP);
randomSeed (analogRead(4)) ;
for (a = 0; a < truthTable; a++)
{

randomisedTT[a] = a;

}

Nano module D unit #2 93 of 114 www.elegantAlorg

http://www.elegantAI.org

void loop()

{
if (training == true)
{
digitalWrite(LEDR, LOW);
digitalWrite(LEDG, HIGH);
for (int 1 = 0; i < hiddenNodes; i++)
{
for (int j = @; j <= inputNodes; j++)
{
hiddenWeights[j][i] = float(random(100))/100;
b
I
for (int 1 = @; i < outputNodes; i++)
{
for (int j = @0; j <= hiddenNodes; j++)
{
outputWeights[j]l[i] = float(random(100))/100;
}
}
for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+
+)
{
for (a = 0; a < truthTable; a++)
{
b = random(truthTable);
c = randomisedTT[a];

randomisedTT[a] = randomisedTTI[b];

randomisedTT[b] = c;

Nano module D unit #2 94 of 114 www.elegantAlorg

http://www.elegantAI.org

by

error = 0;

for (b = 0; b < truthTable; b++)
{
a = randomisedTT[b];
for (i = 0; i < hiddenNodes; i++)
{
sum = hiddenWeights[inputNodes] [i];
for (j = @; j < inputNodes; j++)

{

sum += input[al[j] * hiddenWeights[j][il;
¥
hidden[i] =1 / (1 + exp(-sum));

for (i = 0; i < outputNodes; i++)
{
sum = outputWeights[hiddenNodes] [i];
for (j = 0; j < hiddenNodes; j++)
{
sum += hidden[j] * outputWeights[j]I[il;
b
output[i] =1 / (1 + exp(-sum));

outputDeltal[i] = (target[al [i] - output[i]) * output[i]
* (1 - outputl[il);

error += 0.5 *x (target[a] [i] - output[i]l) x (target[al
[i] - output[il);

by

for (i = @; i < hiddenNodes; i++)
{

sum = 0;

Nano module D unit #2 95 of 114 www.elegantAlorg

http://www.elegantAI.org

for (j = @; j < outputNodes; j++)

{
sum += outputWeights[i]l [j] * outputDeltalj];
¥
hiddenDeltal[i]l = sum * hidden[i] % (1 - hidden[i]);

for (i = @; i < hiddenNodes; i++)
{

changeHiddenWeights [inputNodes] [i] = learningRate x*
hiddenDelta[i] + momentum *x changeHiddenWeights[inputNodes] [i];

hiddenWeights[inputNodes] [i] +=
changeHiddenWeights [inputNodes] [i];

for (j = @; j < inputNodes; j++)
{

changeHiddenWeights[j] [i] = learningRate * input[a]
[j1 * hiddenDeltal[i] + momentum * changeHiddenWeights[j][i]l;

hiddenWeights[j][i] += changeHiddenWeights[j][i];

for (i = @; i < outputNodes; i++)
{

changeOutputWeights [hiddenNodes] [i] = learningRate x*
outputDeltali] + momentum * changeOutputWeights[hiddenNodes] [i];

outputWeights [hiddenNodes] [i] +=
changeOutputWeights [hiddenNodes] [i];

for (j = @; j < hiddenNodes; j++)
{

changeOutputWeights[j][i] = learningRate *x hidden[j]
* outputDeltal[i] + momentum * changeOutputWeights([j][il;

outputWeights[j][i] += changeOutputWeights[j][i];

Nano module D unit #2 96 of 114 www.elegantAlorg

http://www.elegantAI.org

}
training = false;
digitalWrite(LEDR, HIGH);
digitalWrite(LEDG, LOW);
Serial.print(" error = ");
Serial.println(error, 5);
b
buttons();

void buttons()

{
inputPinl = digitalRead(buttonPinl);
inputPin2 = digitalRead(buttonPin2);
if (inputPinl == LOW && inputPin2 == HIGH)
{
a =1;
¥
else if (inputPinl == HIGH && inputPin2 == LOW)
{
a = 2;
b
else if (inputPinl == LOW && inputPin2 == LOW)
{
a = 3;
b
else
{
a=0;
¥

for (1 = 0; i < hiddenNodes; i++)

Nano module D unit #2 97 of 114 www.elegantAlorg

http://www.elegantAI.org

sum = hiddenWeights[inputNodes] [i];
for (j = @; j < inputNodes; j++)

{
sum += inputlal[j] * hiddenWeights[j]I[il;
}
hidden[i] = 1 / (1 + exp(-sum));
b
¥
" Notes

We are not training (no backpropagation), just feeding the data forward
through the already trained model.

Nano module D unit #2 98 of 114 www.elegantAlorg

http://www.elegantAI.org

R
[7y e

e
|

Sketch D2.23 hidden to oufput

Final piece of the jigsaw, we move the hidden outputs through fo the
output layer and calculate the final result (output). We will print them to
the serial monitor to five decimal places. When you press one of the
buttons, it should read nearly one; pressing both buttons simultaneously
should bring it back fto almost zero.

Arduino sketch
const int ledPin = 13;

const int buttonPinl

1l
N

const int buttonPin2

1
w

int inputPinl;
int inputPin2;
const int truthTable

1 1l
1

N B
N - -

const int inputNodes
const int hiddenNodes

const int outputNodes

1l
=

bool training = true;

float hiddenWeights[inputNodes + 1] [hiddenNodes];
float outputWeights[hiddenNodes + 1] [outputNodes];
int randomisedTT[truthTablel];

int a;

long trainingCycle;

int b;

int c;

int 1i;

float sum;

int j;

float hidden[hiddenNodes];

float output[outputNodes];

float error;

float outputDeltaloutputNodes];

float hiddenDelta[hiddenNodes];

Nano module D unit #2 99 of 114 www.elegantAl.org

http://www.elegantAI.org

float changeHiddenWeights[inputNodes + 1] [hiddenNodes];
float learningRate = 0.5;
float momentum = 0.9;

float changeOutputWeights[hiddenNodes + 1] [outputNodes];

const int input[truthTable] [inputNodes] = {
{0, 01},
{1, 0},
{0, 11},
{1, 1}
i

const int target[truthTable] [outputNodes] = {
{0},
{11},
{11},
{0}
b

void setup()

{
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode(LEDR, OUTPUT);
pinMode (LEDG, OUTPUT);
pinMode(buttonPinl, INPUT_PULLUP);
pinMode (buttonPin2, INPUT_PULLUP);
randomSeed (analogRead(4));
for (a = @0; a < truthTable; a++)
{

randomisedTT[al]l = a;

}

Nano module D unit #2 100 of 114 www.elegantAlorg

http://www.elegantAI.org

void loop()

{
if (training == true)
{
digitalWrite(LEDR, LOW);
digitalWrite(LEDG, HIGH);
for (int 1 = @; i < hiddenNodes; i++)
{
for (int j = @0; j <= inputNodes; j++)
{
hiddenWeights[j][i] = float(random(100))/100;
}
}
for (int 1 = 0; i < outputNodes; i++)
{
for (int j = 0; j <= hiddenNodes; j++)
{
outputWeights[j]l[i] = float(random(100))/100;
}
I
for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+
+)
{
for (a = @; a < truthTable; a++)
{
b = random(truthTable);
c = randomisedTT[al;

randomisedTT[al] = randomisedTT[b];

randomisedTT[b] = c;

Nano module D unit #2 101 of 114 www.elegantAlorg

http://www.elegantAI.org

error = 0;

for (b = 0; b < truthTable; b++)
{
a = randomisedTT[b];
for (1 = @; i < hiddenNodes; i++)
{
sum = hiddenWeights[inputNodes] [i];
for (j = @; j < inputNodes; j++)

{

sum += input[al [j] * hiddenWeights[j][il;
}
hidden[i] =1 / (1 + exp(-sum));

for (i = @; i < outputNodes; i++)
{
sum = outputWeights[hiddenNodes] [i];
for (j = @; j < hiddenNodes; j++)
{
sum += hidden[j] * outputWeights[j][il;
¥
output[i] =1 / (1 + exp(-sum));

outputDeltal[i] = (target[a][i] - output[i]) * output[i]
x (1 - output[i]l);

error += 0.5 x (targetl[al[i] - output[i]l) * (targetlal
[i] - output[i]);

¥

for (i = 0; i < hiddenNodes; i++)
{
sum = 0;

for (j = @; j < outputNodes; j++)

Nano module D unit #2 102 of 114 www.elegantAlorg

http://www.elegantAI.org

sum += outputWeights[il[j] * outputDeltalj];

}
hiddenDelta[i] = sum % hidden[i] * (1 - hidden[il);

for (i = 0; i < hiddenNodes; i++)
{

changeHiddenWeights [inputNodes] [i] = learningRate x*
hiddenDelta[i] + momentum % changeHiddenWeights[inputNodes] [i];

hiddenWeights [inputNodes] [i] +=
changeHiddenWeights [inputNodes] [i];

for (j = 0; j < inputNodes; j++)
{

changeHiddenWeights[j] [i] = learningRate * input[a]
[j1 * hiddenDelta[il + momentum * changeHiddenWeights[j][i];

hiddenWeights[j]l[i] += changeHiddenWeights[j][il;

for (i = @0; i < outputNodes; i++)
{

changeOutputWeights[hiddenNodes] [i] = learningRate x*
outputDelta[i] + momentum * changeOutputWeights[hiddenNodes][i];

outputWeights[hiddenNodes] [i] +=
changeOutputWeights [hiddenNodes] [i];

for (j = @; j < hiddenNodes; j++)
{

changeOutputWeights[j] [i] = learningRate * hidden[j]
* outputDeltal[i] + momentum * changeOutputWeights[jl[il;

outputWeights[j]l[i] += changeOutputWeights[j][i];

Nano module D unit #2 103 of 114 www.elegantAlorg

http://www.elegantAI.org

I
training = false;
digitalWrite(LEDR, HIGH);
digitalWrite(LEDG, LOW);
Serial.print(" error = ");
Serial.println(error, 5);
¥
buttons();

void buttons()

{

digitalRead(buttonPinl);
inputPin2 = digitalRead(buttonPin2);
if (inputPinl == LOW && inputPin2 == HIGH)

inputPinl

else if (inputPinl == HIGH && inputPin2 == LOW)

else if (inputPinl == LOW && inputPin2 == LOW)

a = 3;
¥
else
{

a = 0;
b

for (i = @; i < hiddenNodes; i++)

Nano module D unit #2 104 of 114

www.elegantAl.org

http://www.elegantAI.org

sum = hiddenWeights[inputNodes] [il;
for (j = 0; j < inputNodes; j++)

{

sum += inputlal[j] * hiddenWeights[j][il;
+
hidden[i] = 1 / (1 + exp(-sum));

for (i = @0; i < outputNodes; i++)
{
sum = outputWeights[hiddenNodes] [i];
for (j = 0; j < hiddenNodes; j++)
{
sum += hidden[j] * outputWeights[j][il;
}
output[i] =1 / (1 + exp(-sum));
Serial.println(output[i]l, 5);

The feed forward reaches the final output neuron. Figure D2.23a shows
the results for no button pressed (LED off). Figure D2.23b is one button
pressed (LED on). You should get an equally low number when both are
pressed (LED effectively off).

Nano module D unit #2 105 of 114 www.elegantAlorg

http://www.elegantAI.org

Figure D2.23a

@ ANN | Arduino IDE 2.3.7-nightly-20251105

¢ Arduino Nano33BLE ~

ANN.ino

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

Output

00219
00219
00219
00219
00219
00219
00219
00219
00219

sSooscooess

+

}

sum += input[al [j] * hiddenWeights[j] [i]
}
hidden[i] =1 / (1 + exp(-sum));

for (i = @; i < outputNodes; i++)

{

}

sum = outputWeights[hiddenNodes] [i];
for (j = 0; j < hiddenNodes; j++)
{

sum += hidden[j] * outputWeights[j][i];
}
output[il =1 / (1 + exp(-sum));
Serial.println(output[il, 5);

Serial Monitor X

\d message to) BLE' on

e

No Line Ending ¥ 9600 baud <

Nano module D unit #2 106 of 114

www.elegantAlorg

http://www.elegantAI.org

Figure D2.23b

& ANN | Arduino IDE 2.3.7-nightly-20251105

ANN.ino

185 {

186 sum += input[al[j] * hiddenWeights[j][il;
187 }

188 hidden[i] =1 / (1 + exp(-sum));

189 }

190

191 for (i = @; i < outputNodes; i++)

192 {

193 sum = outputWeights[hiddenNodes][i];

194 for (j = @; j < hiddenNodes; j++)

195 {

196 sum += hidden[j] * outputWeights[j][il;
197 }

198 output[i] = 1 / (1 + exp(-sum));

199 Serial.println(output[i], 5);

200 }

201}

Output Serial Monitor X v|0

i m) I No Line Ending ¥ 9600 baud

99586
99586
99586
99586
99586
99586
99586
99586
99586

cSovoooeeS®

Nano module D unit #2 107 of 114 www.elegantAl.org

http://www.elegantAI.org

.7l Sketch D2.24 output to LED

We are going to take the prediction and convert it into an LED. We want it
in the format of an integer between 0 and 255. To do that, we convert the
float to an integer and multiply it by 255. For some instances, it might
glow very slightly when it should be off.

const
const

const

Arduino sketch

int ledPin = 13;

int inputPinl;

int inputPin2;

const
const
const

const

int buttonPinl = 2;
int buttonPin2 = 3;
int truthTable = 4;
int inputNodes = 2;

int hiddenNodes = 4;
1;

int outputNodes =

bool training = true;

float hiddenWeights[inputNodes + 1] [hiddenNodes];
float outputWeights[hiddenNodes + 1] [outputNodes];

int randomisedTT[truthTablel;

int a;

long trainingCycle;

int b;
int c;
int 1i;
float
int j;
float
float
float
float
float

sum;

hidden[hiddenNodes];
output [outputNodes];
error;
outputDelta[outputNodes];
hiddenDelta[hiddenNodes];

Nano module D unit #2 108 of 114

www.elegantAlorg

http://www.elegantAI.org

float changeHiddenWeights[inputNodes + 1] [hiddenNodes];
float learningRate = 0.5;
float momentum = 0.9;

float changeOutputWeights[hiddenNodes + 1] [outputNodes];

const int input[truthTable] [inputNodes] = {
{0, 01},
{1, 0},
{0, 11},
{1, 1}
i

const int target[truthTable] [outputNodes] = {
{0},
{11},
{11},
{0}
b

void setup()

{
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode(LEDR, OUTPUT);
pinMode (LEDG, OUTPUT);
pinMode(buttonPinl, INPUT_PULLUP);
pinMode (buttonPin2, INPUT_PULLUP);
randomSeed (analogRead(4));
for (a = @0; a < truthTable; a++)
{

randomisedTT[al]l = a;

}

Nano module D unit #2 109 of 114 www.elegantAlorg

http://www.elegantAI.org

void loop()

{
if (training == true)
{
digitalWrite(LEDR, LOW);
digitalWrite(LEDG, HIGH);
for (int 1 = @; i < hiddenNodes; i++)
{
for (int j = @0; j <= inputNodes; j++)
{
hiddenWeights[j][i] = float(random(100))/100;
}
}
for (int 1 = 0; i < outputNodes; i++)
{
for (int j = 0; j <= hiddenNodes; j++)
{
outputWeights[j]l[i] = float(random(100))/100;
}
I
for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+
+)
{
for (a = @; a < truthTable; a++)
{
b = random(truthTable);
c = randomisedTT[al;

randomisedTT[al] = randomisedTT[b];

randomisedTT[b] = c;

Nano module D unit #2 110 of 114 www.elegantAlorg

http://www.elegantAI.org

error = 0;

for (b = 0; b < truthTable; b++)
{
a = randomisedTT[b];
for (1 = @; i < hiddenNodes; i++)
{
sum = hiddenWeights[inputNodes] [i];
for (j = @; j < inputNodes; j++)

{

sum += input[al [j] * hiddenWeights[j][il;
}
hidden[i] =1 / (1 + exp(-sum));

for (i = @; i < outputNodes; i++)
{
sum = outputWeights[hiddenNodes] [i];
for (j = @; j < hiddenNodes; j++)
{
sum += hidden[j] * outputWeights[j][il;
¥
output[i] =1 / (1 + exp(-sum));

outputDeltal[i] = (target[a][i] - output[i]) * output[i]
x (1 - output[i]l);

error += 0.5 x (targetl[al[i] - output[i]l) * (targetlal
[i] - output[i]);

¥

for (i = 0; i < hiddenNodes; i++)
{
sum = 0;

for (j = @; j < outputNodes; j++)

Nano module D unit #2 111 of 114 www.elegantAlorg

http://www.elegantAI.org

sum += outputWeights[il[j] * outputDeltalj];

}
hiddenDelta[i] = sum % hidden[i] * (1 - hidden[il);

for (i = 0; i < hiddenNodes; i++)
{

changeHiddenWeights [inputNodes] [i] = learningRate x*
hiddenDelta[i] + momentum % changeHiddenWeights[inputNodes] [i];

hiddenWeights [inputNodes] [i] +=
changeHiddenWeights [inputNodes] [i];

for (j = 0; j < inputNodes; j++)
{

changeHiddenWeights[j] [i] = learningRate * input[a]
[j1 * hiddenDelta[il + momentum * changeHiddenWeights[j][i];

hiddenWeights[j]l[i] += changeHiddenWeights[j][il;

for (i = @0; i < outputNodes; i++)
{

changeOutputWeights[hiddenNodes] [i] = learningRate x*
outputDelta[i] + momentum * changeOutputWeights[hiddenNodes][i];

outputWeights[hiddenNodes] [i] +=
changeOutputWeights [hiddenNodes] [i];

for (j = @; j < hiddenNodes; j++)
{

changeOutputWeights[j] [i] = learningRate * hidden[j]
* outputDeltal[i] + momentum * changeOutputWeights[jl[il;

outputWeights[j]l[i] += changeOutputWeights[j][i];

Nano module D unit #2 112 of 114 www.elegantAlorg

http://www.elegantAI.org

I
training = false;
digitalWrite(LEDR, HIGH);
digitalWrite(LEDG, LOW);
Serial.print(" error = ");
Serial.println(error, 5);
¥
buttons();

void buttons()

{

digitalRead(buttonPinl);
inputPin2 = digitalRead(buttonPin2);
if (inputPinl == LOW && inputPin2 == HIGH)

inputPinl

else if (inputPinl == HIGH && inputPin2 == LOW)

else if (inputPinl == LOW && inputPin2 == LOW)

a = 3;
¥
else
{

a = 0;
b

for (i = @; i < hiddenNodes; i++)

Nano module D unit #2 113 of 114

www.elegantAl.org

http://www.elegantAI.org

sum = hiddenWeights[inputNodes] [il;
for (j = 0; j < inputNodes; j++)

{

sum += inputlal[j] * hiddenWeights[j][il;
+
hidden[i] = 1 / (1 + exp(-sum));

for (i = @0; i < outputNodes; i++)
{
sum = outputWeights[hiddenNodes] [i];
for (j = 0; j < hiddenNodes; j++)
{
sum += hidden[j] * outputWeights[j][il;
I
output[i] =1 / (1 + exp(-sum));
Serial.println(output[i]l, 5);

b
for (i = 0; i < outputNodes; i++)
{
analogWrite(ledPin, int(output[i] * 255));
¥
b
", Notes

When you press one button, it should switch the LED on, and when you
press both, the LED should switch off.

Nano module D unit #2 114 of 114 www.elegantAlorg

http://www.elegantAI.org

