
Intelligent

Machines

Module D

Unit #2

neural
network

Module D Unit #2 the XOR neural network

Introduction to the neural network

The parameters and hyperparameters

Sketch D2.1 let us begin

Sketch D2.2 the buttons function

Sketch D2.3 input and target data

Sketch D2.4 naming key variables

Sketch D2.5 training is true

Sketch D2.6 filling the weights

Sketch D2.7 creating an array

Sketch D2.8 randomising the truth table

Sketch D2.9 cycle through

Sketch D2.10 introducing the sum

Sketch D2.11 the weighted sum

Sketch D2.12 activation function

Sketch D2.13 more weighted sums

Sketch D2.14 error

Sketch D2.15 delta

Sketch D2.16 delta to hidden

Sketch D2.17 updating the hidden weights

Sketch D2.18 change the output weights

Sketch D2.19 seeing the error

Sketch D2.20 RGB LED training finished

Sketch D2.21 truth table buttons

Sketch D2.22 inputs to hidden

Sketch D2.23 hidden to output

Sketch D2.24 output to LED

Content

Nano module D unit #2 of 2 114 www.elegantAI.org

http://www.elegantAI.org

If you have followed along with the previous modules, you may be
expecting a nice library we could use to do the work for us. The good
news is there are libraries we could use; the bad news is that they can be
quite complex, and for the moment, we can create our own neural network
right inside the Arduino Nano 33 BLE.

We will build a neural network with two input neurons (nodes), button 1
and button 2, four hidden neurons (nodes), and one output neuron (node),
the LED. See the diagram below:

Introduction to the neural network

Nano module D unit #2 of 3 114 www.elegantAI.org

Figure 1: neural network

http://www.elegantAI.org

Learning Rate: The learning rate determines the size of the step taken
during each update. It plays a crucial role in both standard gradient
descent and momentum-based optimisers.

Momentum: This controls how much of the past gradients are remembered
in the current update. A value close to 1 means the optimiser will have
more inertia, while a value closer to 0 means less reliance on past
gradients.

Bias: Although I have drawn two input neurons, four hidden neurons, and
one output neuron. We need to add an extra neuron to the input layer and
an extra neuron to the hidden layer. They fire one each time just in case
we have a situation where the neurons all become zero, which is definitely
not what we want. The added benefit of adding bias neurons is stability.

Backpropagation: Once the data has flowed through the neural
network and the error calculated, it needs to work back through the
neural network, tweaking the weights so that when it goes through again,
the error is less. This is called backpropagation.

Activation function: For this, we use the sigmoid function. This is
perfectly fine for such a small neural network: y = 1 / (1 + e^(-x))

Error: To calculate the error, we use a form of Mean Squared Error
(MSE). Which looks like: error = 0.5 * (target - output)^2

Weights: We have two sets of weights, those between the input and
hidden neurons, and those between the hidden and output neurons. We will
call them hiddenWeights and outputWeights, respectively.

The parameters and hyperparameters

Nano module D unit #2 of 4 114 www.elegantAI.org

http://www.elegantAI.org

❗ Our starting sketch.

🗒 Notes

We have started with our basic sketch, plus added an extra function called
buttons(). This is where the prediction takes place after we have
trained the neural network. We use const int rather than just int because
these are fixed variables (a bit contradictory, I know). We aren’t going to
change these, so a const will mitigate accidentally changing them.

Sketch D2.1 let us begin

Arduino sketch

const int ledPin = 13;

const int buttonPin1 = 2;

const int buttonPin2 = 3;

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin1, INPUT_PULLUP);

 pinMode(buttonPin2, INPUT_PULLUP);

}

void loop()

{

 buttons();

}

void buttons()

{

 // this is where we activate the buttons

}

Nano module D unit #2 of 5 114 www.elegantAI.org

http://www.elegantAI.org

We add two more variables, inputPin1 and inputPin2, and these are
changeable. We will use them to read the values on the button pins.

Sketch D2.2 the buttons function

Arduino sketch

const int ledPin = 13;

const int buttonPin1 = 2;

const int buttonPin2 = 3;

int inputPin1;

int inputPin2;

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin1, INPUT_PULLUP);

 pinMode(buttonPin2, INPUT_PULLUP);

}

void loop()

{

 buttons();

}

void buttons()

{

 inputPin1 = digitalRead(buttonPin1);

 inputPin2 = digitalRead(buttonPin2);

 if (inputPin1 == LOW || inputPin2 == LOW)

 {

 digitalWrite(ledPin, HIGH);

 }

Nano module D unit #2 of 6 114 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

When you press the buttons, the LED should light up.

 else

 {

 digitalWrite(ledPin, LOW);

 }

}

Nano module D unit #2 of 7 114 www.elegantAI.org

http://www.elegantAI.org

We have our truth table. We need to convert that into an array that can
be used. We have four rows and two input columns, and one output column.
This is a very, very small dataset. We can augment that by randomising the
dataset, and later on we can add more (multiple repeats).

Here we create an input array and a target array. They are const integers
as we are using 1’s and 0’s, and also we don’t want to alter the arrays. I
am using a generic neural network, so I am treating this as if it might
have more than one target.

Sketch D2.3 input and target data

Arduino sketch

const int ledPin = 13;

const int buttonPin1 = 2;

const int buttonPin2 = 3;

int inputPin1;

int inputPin2;

const int input[4][2] = {

 { 0, 0 },

 { 1, 0 },

 { 0, 1 },

 { 1, 1 }

};

const int target[4][1] = {

 { 0 },

 { 1 },

 { 1 },

 { 0 }

};

void setup()

Nano module D unit #2 of 8 114 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

A 4x2 array for the input and a 4x1 array for the target.

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin1, INPUT_PULLUP);

 pinMode(buttonPin2, INPUT_PULLUP);

}

void loop()

{

 buttons();

}

void buttons()

{

 inputPin1 = digitalRead(buttonPin1);

 inputPin2 = digitalRead(buttonPin2);

 if (inputPin1 == LOW || inputPin2 == LOW)

 {

 digitalWrite(ledPin, HIGH);

 }

 else

 {

 digitalWrite(ledPin, LOW);

 }

}

Nano module D unit #2 of 9 114 www.elegantAI.org

http://www.elegantAI.org

Give the variables meaningful names. They are constants because they will
not change, and we don’t want to accidentally change them.

Sketch D2.4 naming key variables

Arduino sketch

const int ledPin = 13;

const int buttonPin1 = 2;

const int buttonPin2 = 3;

int inputPin1;

int inputPin2;

const int truthTable = 4;

const int inputNodes = 2;

const int hiddenNodes = 4;

const int outputNodes = 1;

const int input[truthTable][inputNodes] = {

 { 0, 0 },

 { 1, 0 },

 { 0, 1 },

 { 1, 1 }

};

const int target[truthTable][outputNodes] = {

 { 0 },

 { 1 },

 { 1 },

 { 0 }

};

void setup()

{

 Serial.begin(9600);

Nano module D unit #2 of 10 114 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

This is a generic neural network that will work with any set of inputs and
targets.

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin1, INPUT_PULLUP);

 pinMode(buttonPin2, INPUT_PULLUP);

}

void loop()

{

 buttons();

}

void buttons()

{

 inputPin1 = digitalRead(buttonPin1);

 inputPin2 = digitalRead(buttonPin2);

 if (inputPin1 == LOW || inputPin2 == LOW)

 {

 digitalWrite(ledPin, HIGH);

 }

 else

 {

 digitalWrite(ledPin, LOW);

 }

}

Nano module D unit #2 of 11 114 www.elegantAI.org

http://www.elegantAI.org

We want a boolean expression to indicate when training is to take place
and when it is finished. We create a conditional statement in the void
loop() function.

Sketch D2.5 training is true

Arduino sketch

const int ledPin = 13;

const int buttonPin1 = 2;

const int buttonPin2 = 3;

int inputPin1;

int inputPin2;

const int truthTable = 4;

const int inputNodes = 2;

const int hiddenNodes = 4;

const int outputNodes = 1;

bool training = true;

const int input[truthTable][inputNodes] = {

 { 0, 0 },

 { 1, 0 },

 { 0, 1 },

 { 1, 1 }

};

const int target[truthTable][outputNodes] = {

 { 0 },

 { 1 },

 { 1 },

 { 0 }

};

void setup()

Nano module D unit #2 of 12 114 www.elegantAI.org

http://www.elegantAI.org

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin1, INPUT_PULLUP);

 pinMode(buttonPin2, INPUT_PULLUP);

}

void loop()

{

 if (training == true)

 {

 // all the training is going to happen here until...

 training = false;

 }

 buttons();

}

void buttons()

{

 inputPin1 = digitalRead(buttonPin1);

 inputPin2 = digitalRead(buttonPin2);

 if (inputPin1 == LOW || inputPin2 == LOW)

 {

 digitalWrite(ledPin, HIGH);

 }

 else

 {

 digitalWrite(ledPin, LOW);

 }

}

Nano module D unit #2 of 13 114 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

Once training is finished, we jump out of the training loop by changing the
boolean value.

Nano module D unit #2 of 14 114 www.elegantAI.org

http://www.elegantAI.org

The weights are random values between 0 and 1 to two decimal places.

Sketch D2.6 filling the weights

Arduino sketch

const int ledPin = 13;

const int buttonPin1 = 2;

const int buttonPin2 = 3;

int inputPin1;

int inputPin2;

const int truthTable = 4;

const int inputNodes = 2;

const int hiddenNodes = 4;

const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1][hiddenNodes];

float outputWeights[hiddenNodes + 1][outputNodes];

const int input[truthTable][inputNodes] = {

 { 0, 0 },

 { 1, 0 },

 { 0, 1 },

 { 1, 1 }

};

const int target[truthTable][outputNodes] = {

 { 0 },

 { 1 },

 { 1 },

 { 0 }

};

void setup()

Nano module D unit #2 of 15 114 www.elegantAI.org

http://www.elegantAI.org

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin1, INPUT_PULLUP);

 pinMode(buttonPin2, INPUT_PULLUP);

}

void loop()

{

 if (training == true)

 {

 for (int i = 0; i < hiddenNodes; i++)

 {

 for (int j = 0; j <= inputNodes; j++)

 {

 hiddenWeights[j][i] = float(random(100))/100;

 }

 }

 for (int i = 0; i < outputNodes; i++)

 {

 for (int j = 0; j <= hiddenNodes; j++)

 {

 outputWeights[j][i] = float(random(100))/100;

 }

 }

 training = false;

 }

 buttons();

}

void buttons()

{

Nano module D unit #2 of 16 114 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

To get the kind of weights we want, we have to do it this way in C/C++.

 inputPin1 = digitalRead(buttonPin1);

 inputPin2 = digitalRead(buttonPin2);

 if (inputPin1 == LOW || inputPin2 == LOW)

 {
 digitalWrite(ledPin, HIGH);

 }

 else

 {

 digitalWrite(ledPin, LOW);

 }

}

Nano module D unit #2 of 17 114 www.elegantAI.org

http://www.elegantAI.org

We want to randomise the dataset for the truth table, but first we create
an array that we can randomise and then use to jumble the data to make
it easier to train. We add a global variable, a, so we don’t have to keep
declaring it.

Sketch D2.7 creating an array

Arduino sketch

const int ledPin = 13;

const int buttonPin1 = 2;

const int buttonPin2 = 3;

int inputPin1;

int inputPin2;

const int truthTable = 4;

const int inputNodes = 2;

const int hiddenNodes = 4;

const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1][hiddenNodes];

float outputWeights[hiddenNodes + 1][outputNodes];

int randomisedTT[truthTable];

int a;

const int input[truthTable][inputNodes] = {

 { 0, 0 },

 { 1, 0 },

 { 0, 1 },

 { 1, 1 }

};

const int target[truthTable][outputNodes] = {

 { 0 },

 { 1 },

Nano module D unit #2 of 18 114 www.elegantAI.org

http://www.elegantAI.org

 { 1 },

 { 0 }

};

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin1, INPUT_PULLUP);

 pinMode(buttonPin2, INPUT_PULLUP);

 for (a = 0; a < truthTable; a++)

 {

 randomisedTT[a] = a;

 }

}

void loop()

{

 if (training == true)

 {

 for (int i = 0; i < hiddenNodes; i++)

 {

 for (int j = 0; j <= inputNodes; j++)

 {

 hiddenWeights[j][i] = float(random(100))/100;

 }

 }

 for (int i = 0; i < outputNodes; i++)

 {

 for (int j = 0; j <= hiddenNodes; j++)

 {

 outputWeights[j][i] = float(random(100))/100;

Nano module D unit #2 of 19 114 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

This hasn’t randomised the array just yet, just setting the scene.

 }

 }

 training = false;

 }

 buttons();

}

void buttons()

{

 inputPin1 = digitalRead(buttonPin1);

 inputPin2 = digitalRead(buttonPin2);

 if (inputPin1 == LOW || inputPin2 == LOW)

 {

 digitalWrite(ledPin, HIGH);

 }

 else

 {

 digitalWrite(ledPin, LOW);

 }

}

Nano module D unit #2 of 20 114 www.elegantAI.org

http://www.elegantAI.org

The randomised truth table will be done during the actual training process
once we have initialised the weights. We will want to cycle through the
randomised data a number of times because it is such a tiny dataset. So
we will do this 10000 times.

Sketch D2.8 randomising the truth table

Arduino sketch

const int ledPin = 13;

const int buttonPin1 = 2;

const int buttonPin2 = 3;

int inputPin1;

int inputPin2;

const int truthTable = 4;

const int inputNodes = 2;

const int hiddenNodes = 4;

const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1][hiddenNodes];

float outputWeights[hiddenNodes + 1][outputNodes];

int randomisedTT[truthTable];

int a;

long trainingCycle;

int b;

int c;

const int input[truthTable][inputNodes] = {

 { 0, 0 },

 { 1, 0 },

 { 0, 1 },

 { 1, 1 }

};

Nano module D unit #2 of 21 114 www.elegantAI.org

http://www.elegantAI.org

const int target[truthTable][outputNodes] = {

 { 0 },

 { 1 },

 { 1 },

 { 0 }

};

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin1, INPUT_PULLUP);

 pinMode(buttonPin2, INPUT_PULLUP);

 randomSeed(analogRead(4));

 for (a = 0; a < truthTable; a++)

 {

 randomisedTT[a] = a;

 }

}

void loop()

{

 if (training == true)

 {

 for (int i = 0; i < hiddenNodes; i++)

 {

 for (int j = 0; j <= inputNodes; j++)

 {

 hiddenWeights[j][i] = float(random(100))/100;

 }

 }

 for (int i = 0; i < outputNodes; i++)

Nano module D unit #2 of 22 114 www.elegantAI.org

http://www.elegantAI.org

 {

 for (int j = 0; j <= hiddenNodes; j++)

 {

 outputWeights[j][i] = float(random(100))/100;

 }

 }

 for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+
+)

 {

 for (a = 0; a < truthTable; a++)

 {

 b = random(truthTable);

 c = randomisedTT[a];

 randomisedTT[a] = randomisedTT[b];

 randomisedTT[b] = c;

 }

 }

 training = false;

 }

 buttons();

}

void buttons()

{

 inputPin1 = digitalRead(buttonPin1);

 inputPin2 = digitalRead(buttonPin2);

 if (inputPin1 == LOW || inputPin2 == LOW)

 {

 digitalWrite(ledPin, HIGH);

 }

 else

 {

Nano module D unit #2 of 23 114 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We give the random() function a seed value drawn from a random value
on pin 4. It means every time we run the sketch, we get a different
random series of numbers.

 digitalWrite(ledPin, LOW);

 }

}

Nano module D unit #2 of 24 114 www.elegantAI.org

http://www.elegantAI.org

We are going to cycle through each training pattern in the randomised
order.

Sketch D2.9 cycle through

Arduino sketch

const int ledPin = 13;

const int buttonPin1 = 2;

const int buttonPin2 = 3;

int inputPin1;

int inputPin2;

const int truthTable = 4;

const int inputNodes = 2;

const int hiddenNodes = 4;

const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1][hiddenNodes];

float outputWeights[hiddenNodes + 1][outputNodes];

int randomisedTT[truthTable];

int a;

long trainingCycle;

int b;

int c;

const int input[truthTable][inputNodes] = {

 { 0, 0 },

 { 1, 0 },

 { 0, 1 },

 { 1, 1 }

};

const int target[truthTable][outputNodes] = {

 { 0 },

Nano module D unit #2 of 25 114 www.elegantAI.org

http://www.elegantAI.org

 { 1 },

 { 1 },

 { 0 }

};

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin1, INPUT_PULLUP);

 pinMode(buttonPin2, INPUT_PULLUP);

 randomSeed(analogRead(4));

 for (a = 0; a < truthTable; a++)

 {

 randomisedTT[a] = a;

 }

}

void loop()

{

 if (training == true)

 {

 for (int i = 0; i < hiddenNodes; i++)

 {

 for (int j = 0; j <= inputNodes; j++)

 {

 hiddenWeights[j][i] = float(random(100))/100;

 }

 }

 for (int i = 0; i < outputNodes; i++)

 {

 for (int j = 0; j <= hiddenNodes; j++)

Nano module D unit #2 of 26 114 www.elegantAI.org

http://www.elegantAI.org

 {

 outputWeights[j][i] = float(random(100))/100;

 }

 }

 for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+
+)

 {

 for (a = 0; a < truthTable; a++)

 {

 b = random(truthTable);

 c = randomisedTT[a];

 randomisedTT[a] = randomisedTT[b];

 randomisedTT[b] = c;

 }

 for (b = 0; b < truthTable; b++)

 {

 a = randomisedTT[b];

 }

 }

 training = false;

 }

 buttons();

}

void buttons()

{

 inputPin1 = digitalRead(buttonPin1);

 inputPin2 = digitalRead(buttonPin2);

 if (inputPin1 == LOW || inputPin2 == LOW)

 {

 digitalWrite(ledPin, HIGH);

Nano module D unit #2 of 27 114 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

The order of the data set will change on each iteration.

 }

 else

 {

 digitalWrite(ledPin, LOW);

 }

}

Nano module D unit #2 of 28 114 www.elegantAI.org

http://www.elegantAI.org

We are going to compute the hidden layer activations. For this, we
need to add up all the weighted sums, which also includes the bias
(the extra neuron). The bias value is 1. We create a global variable for i
and the sum.

Sketch D2.10 introducing the sum

Arduino sketch

const int ledPin = 13;

const int buttonPin1 = 2;

const int buttonPin2 = 3;

int inputPin1;

int inputPin2;

const int truthTable = 4;

const int inputNodes = 2;

const int hiddenNodes = 4;

const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1][hiddenNodes];

float outputWeights[hiddenNodes + 1][outputNodes];

int randomisedTT[truthTable];

int a;

long trainingCycle;

int b;

int c;

int i;

float sum;

const int input[truthTable][inputNodes] = {

 { 0, 0 },

 { 1, 0 },

 { 0, 1 },

 { 1, 1 }

Nano module D unit #2 of 29 114 www.elegantAI.org

http://www.elegantAI.org

};

const int target[truthTable][outputNodes] = {

 { 0 },

 { 1 },

 { 1 },

 { 0 }

};

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin1, INPUT_PULLUP);

 pinMode(buttonPin2, INPUT_PULLUP);

 randomSeed(analogRead(4));

 for (a = 0; a < truthTable; a++)

 {

 randomisedTT[a] = a;

 }

}

void loop()

{

 if (training == true)

 {

 for (int i = 0; i < hiddenNodes; i++)

 {

 for (int j = 0; j <= inputNodes; j++)

 {

 hiddenWeights[j][i] = float(random(100))/100;

 }

 }

Nano module D unit #2 of 30 114 www.elegantAI.org

http://www.elegantAI.org

 for (int i = 0; i < outputNodes; i++)

 {

 for (int j = 0; j <= hiddenNodes; j++)

 {

 outputWeights[j][i] = float(random(100))/100;

 }

 }

 for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+
+)

 {

 for (a = 0; a < truthTable; a++)

 {

 b = random(truthTable);

 c = randomisedTT[a];

 randomisedTT[a] = randomisedTT[b];

 randomisedTT[b] = c;

 }

 for (b = 0; b < truthTable; b++)

 {

 a = randomisedTT[b];

 for (i = 0; i < hiddenNodes; i++)

 {

 sum = hiddenWeights[inputNodes][i];

 }

 }

 }

 training = false;

 }

 buttons();

}

Nano module D unit #2 of 31 114 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

The variable a is redundant here but is used in the next sketch. Building
up slowly.

void buttons()

{

 inputPin1 = digitalRead(buttonPin1);

 inputPin2 = digitalRead(buttonPin2);

 if (inputPin1 == LOW || inputPin2 == LOW)

 {

 digitalWrite(ledPin, HIGH);

 }

 else

 {

 digitalWrite(ledPin, LOW);

 }

}

Nano module D unit #2 of 32 114 www.elegantAI.org

http://www.elegantAI.org

Now, to add all the weights and inputs to the hidden layer, hence
sum +=. For each hidden neuron, we work out the weighted sums and add
them together before we pass it through the activation function.

Sketch D2.11 the weighted sum

Arduino sketch

const int ledPin = 13;

const int buttonPin1 = 2;

const int buttonPin2 = 3;

int inputPin1;

int inputPin2;

const int truthTable = 4;

const int inputNodes = 2;

const int hiddenNodes = 4;

const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1][hiddenNodes];

float outputWeights[hiddenNodes + 1][outputNodes];

int randomisedTT[truthTable];

int a;

long trainingCycle;

int b;

int c;

int i;

float sum;

int j;

const int input[truthTable][inputNodes] = {

 { 0, 0 },

 { 1, 0 },

 { 0, 1 },

 { 1, 1 }

Nano module D unit #2 of 33 114 www.elegantAI.org

http://www.elegantAI.org

};

const int target[truthTable][outputNodes] = {

 { 0 },

 { 1 },

 { 1 },

 { 0 }

};

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin1, INPUT_PULLUP);

 pinMode(buttonPin2, INPUT_PULLUP);

 randomSeed(analogRead(4));

 for (a = 0; a < truthTable; a++)

 {

 randomisedTT[a] = a;

 }

}

void loop()

{

 if (training == true)

 {

 for (int i = 0; i < hiddenNodes; i++)

 {

 for (int j = 0; j <= inputNodes; j++)

 {

 hiddenWeights[j][i] = float(random(100))/100;

 }

 }

Nano module D unit #2 of 34 114 www.elegantAI.org

http://www.elegantAI.org

 for (int i = 0; i < outputNodes; i++)

 {

 for (int j = 0; j <= hiddenNodes; j++)

 {

 outputWeights[j][i] = float(random(100))/100;

 }

 }

 for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+
+)

 {

 for (a = 0; a < truthTable; a++)

 {

 b = random(truthTable);

 c = randomisedTT[a];

 randomisedTT[a] = randomisedTT[b];

 randomisedTT[b] = c;

 }

 for (b = 0; b < truthTable; b++)

 {

 a = randomisedTT[b];

 for (i = 0; i < hiddenNodes; i++)

 {

 sum = hiddenWeights[inputNodes][i];

 for (j = 0; j < inputNodes; j++)

 {

 sum += input[a][j] * hiddenWeights[j][i];

 }

 }

 }

 }

Nano module D unit #2 of 35 114 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We are accumulating the weighted sums for each neuron.

 training = false;

 }

 buttons();

}

void buttons()

{

 inputPin1 = digitalRead(buttonPin1);

 inputPin2 = digitalRead(buttonPin2);

 if (inputPin1 == LOW || inputPin2 == LOW)

 {

 digitalWrite(ledPin, HIGH);

 }

 else

 {

 digitalWrite(ledPin, LOW);

 }

}

Nano module D unit #2 of 36 114 www.elegantAI.org

http://www.elegantAI.org

Once all the weighted sums have been added to each neuron, then it
needs to pass through the activation function, which is the
sigmoid function.

Sketch D2.12 activation function

Arduino sketch

const int ledPin = 13;

const int buttonPin1 = 2;

const int buttonPin2 = 3;

int inputPin1;

int inputPin2;

const int truthTable = 4;

const int inputNodes = 2;

const int hiddenNodes = 4;

const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1][hiddenNodes];

float outputWeights[hiddenNodes + 1][outputNodes];

int randomisedTT[truthTable];

int a;

long trainingCycle;

int b;

int c;

int i;

float sum;

int j;

float hidden[hiddenNodes];

const int input[truthTable][inputNodes] = {

 { 0, 0 },

 { 1, 0 },

 { 0, 1 },

Nano module D unit #2 of 37 114 www.elegantAI.org

http://www.elegantAI.org

 { 1, 1 }

};

const int target[truthTable][outputNodes] = {

 { 0 },

 { 1 },

 { 1 },

 { 0 }

};

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin1, INPUT_PULLUP);

 pinMode(buttonPin2, INPUT_PULLUP);

 randomSeed(analogRead(4));

 for (a = 0; a < truthTable; a++)

 {

 randomisedTT[a] = a;

 }

}

void loop()

{

 if (training == true)

 {

 for (int i = 0; i < hiddenNodes; i++)

 {

 for (int j = 0; j <= inputNodes; j++)

 {

 hiddenWeights[j][i] = float(random(100))/100;

 }

Nano module D unit #2 of 38 114 www.elegantAI.org

http://www.elegantAI.org

 }

 for (int i = 0; i < outputNodes; i++)

 {

 for (int j = 0; j <= hiddenNodes; j++)

 {

 outputWeights[j][i] = float(random(100))/100;

 }

 }

 for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+
+)

 {

 for (a = 0; a < truthTable; a++)

 {

 b = random(truthTable);

 c = randomisedTT[a];

 randomisedTT[a] = randomisedTT[b];

 randomisedTT[b] = c;

 }

 for (b = 0; b < truthTable; b++)

 {

 a = randomisedTT[b];

 for (i = 0; i < hiddenNodes; i++)

 {

 sum = hiddenWeights[inputNodes][i];

 for (j = 0; j < inputNodes; j++)

 {

 sum += input[a][j] * hiddenWeights[j][i];

 }

 hidden[i] = 1 / (1 + exp(-sum));

 }

Nano module D unit #2 of 39 114 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We could use another activation function.

 }

 }

 training = false;

 }

 buttons();

}

void buttons()

{

 inputPin1 = digitalRead(buttonPin1);

 inputPin2 = digitalRead(buttonPin2);

 if (inputPin1 == LOW || inputPin2 == LOW)

 {

 digitalWrite(ledPin, HIGH);

 }

 else

 {

 digitalWrite(ledPin, LOW);

 }

}

Nano module D unit #2 of 40 114 www.elegantAI.org

http://www.elegantAI.org

Next, we calculate the weighted sums from the hidden layer to the
output layer and pass the sum through the activation function
(sigmoid).

Sketch D2.13 more weighted sums

Arduino sketch

const int ledPin = 13;

const int buttonPin1 = 2;

const int buttonPin2 = 3;

int inputPin1;

int inputPin2;

const int truthTable = 4;

const int inputNodes = 2;

const int hiddenNodes = 4;

const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1][hiddenNodes];

float outputWeights[hiddenNodes + 1][outputNodes];

int randomisedTT[truthTable];

int a;

long trainingCycle;

int b;

int c;

int i;

float sum;

int j;

float hidden[hiddenNodes];

float output[outputNodes];

const int input[truthTable][inputNodes] = {

 { 0, 0 },

 { 1, 0 },

Nano module D unit #2 of 41 114 www.elegantAI.org

http://www.elegantAI.org

 { 0, 1 },

 { 1, 1 }

};

const int target[truthTable][outputNodes] = {

 { 0 },

 { 1 },

 { 1 },

 { 0 }

};

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin1, INPUT_PULLUP);

 pinMode(buttonPin2, INPUT_PULLUP);

 randomSeed(analogRead(4));

 for (a = 0; a < truthTable; a++)

 {

 randomisedTT[a] = a;

 }

}

void loop()

{

 if (training == true)

 {

 for (int i = 0; i < hiddenNodes; i++)

 {

 for (int j = 0; j <= inputNodes; j++)

 {

 hiddenWeights[j][i] = float(random(100))/100;

Nano module D unit #2 of 42 114 www.elegantAI.org

http://www.elegantAI.org

 }

 }

 for (int i = 0; i < outputNodes; i++)

 {

 for (int j = 0; j <= hiddenNodes; j++)

 {

 outputWeights[j][i] = float(random(100))/100;

 }

 }

 for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+
+)

 {

 for (a = 0; a < truthTable; a++)

 {

 b = random(truthTable);

 c = randomisedTT[a];

 randomisedTT[a] = randomisedTT[b];

 randomisedTT[b] = c;

 }

 for (b = 0; b < truthTable; b++)

 {

 a = randomisedTT[b];

 for (i = 0; i < hiddenNodes; i++)

 {

 sum = hiddenWeights[inputNodes][i];

 for (j = 0; j < inputNodes; j++)

 {

 sum += input[a][j] * hiddenWeights[j][i];

 }

 hidden[i] = 1 / (1 + exp(-sum));

Nano module D unit #2 of 43 114 www.elegantAI.org

http://www.elegantAI.org

 }

 for (i = 0; i < outputNodes; i++)

 {

 sum = outputWeights[hiddenNodes][i];

 for (j = 0; j < hiddenNodes; j++)

 {

 sum += hidden[j] * outputWeights[j][i];

 }

 output[i] = 1 / (1 + exp(-sum));

 }

 }

 }

 training = false;

 }

 buttons();

}

void buttons()

{

 inputPin1 = digitalRead(buttonPin1);

 inputPin2 = digitalRead(buttonPin2);

 if (inputPin1 == LOW || inputPin2 == LOW)

 {

 digitalWrite(ledPin, HIGH);

 }

 else

 {

 digitalWrite(ledPin, LOW);

 }

}

Nano module D unit #2 of 44 114 www.elegantAI.org

http://www.elegantAI.org

We now have an output from our neural network. We have our target
values and we can compare them. The difference will be our error; we
will use MSE; the code is highlighted below. We initialised the error to
zero before we iterate through the training.

Sketch D2.14 error

Arduino sketch

const int ledPin = 13;

const int buttonPin1 = 2;

const int buttonPin2 = 3;

int inputPin1;

int inputPin2;

const int truthTable = 4;

const int inputNodes = 2;

const int hiddenNodes = 4;

const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1][hiddenNodes];

float outputWeights[hiddenNodes + 1][outputNodes];

int randomisedTT[truthTable];

int a;

long trainingCycle;

int b;

int c;

int i;

float sum;

int j;

float hidden[hiddenNodes];

float output[outputNodes];

float error;

const int input[truthTable][inputNodes] = {

Nano module D unit #2 of 45 114 www.elegantAI.org

http://www.elegantAI.org

 { 0, 0 },

 { 1, 0 },

 { 0, 1 },

 { 1, 1 }

};

const int target[truthTable][outputNodes] = {

 { 0 },

 { 1 },

 { 1 },

 { 0 }

};

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin1, INPUT_PULLUP);

 pinMode(buttonPin2, INPUT_PULLUP);

 randomSeed(analogRead(4));

 for (a = 0; a < truthTable; a++)

 {

 randomisedTT[a] = a;

 }

}

void loop()

{

 if (training == true)

 {

 for (int i = 0; i < hiddenNodes; i++)

 {

 for (int j = 0; j <= inputNodes; j++)

Nano module D unit #2 of 46 114 www.elegantAI.org

http://www.elegantAI.org

 {

 hiddenWeights[j][i] = float(random(100))/100;

 }

 }

 for (int i = 0; i < outputNodes; i++)

 {

 for (int j = 0; j <= hiddenNodes; j++)

 {

 outputWeights[j][i] = float(random(100))/100;

 }

 }

 for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+
+)

 {

 for (a = 0; a < truthTable; a++)

 {

 b = random(truthTable);

 c = randomisedTT[a];

 randomisedTT[a] = randomisedTT[b];

 randomisedTT[b] = c;

 }

 error = 0;

 for (b = 0; b < truthTable; b++)

 {

 a = randomisedTT[b];

 for (i = 0; i < hiddenNodes; i++)

 {

 sum = hiddenWeights[inputNodes][i];

 for (j = 0; j < inputNodes; j++)

 {

Nano module D unit #2 of 47 114 www.elegantAI.org

http://www.elegantAI.org

 sum += input[a][j] * hiddenWeights[j][i];

 }

 hidden[i] = 1 / (1 + exp(-sum));

 }

 for (i = 0; i < outputNodes; i++)

 {

 sum = outputWeights[hiddenNodes][i];

 for (j = 0; j < hiddenNodes; j++)

 {

 sum += hidden[j] * outputWeights[j][i];

 }

 output[i] = 1 / (1 + exp(-sum));

 error += 0.5 * (target[a][i] - output[i]) * (target[a]
[i] - output[i]);

 }

 }

 }

 training = false;

 }

 buttons();

}

void buttons()

{

 inputPin1 = digitalRead(buttonPin1);

 inputPin2 = digitalRead(buttonPin2);

 if (inputPin1 == LOW || inputPin2 == LOW)

 {

 digitalWrite(ledPin, HIGH);

 }

 else

 {

Nano module D unit #2 of 48 114 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We are still at the feedforward stage of the process and are not
changing the weights. All we are doing is calculating the error at this
stage.

 digitalWrite(ledPin, LOW);

 }

}

Nano module D unit #2 of 49 114 www.elegantAI.org

http://www.elegantAI.org

Now we need to go back through the neural network and tweak the
weights. First off are the weights between the output and the hidden
layer. The question is by how much. So we calculate the delta error for the
output. The equation is ∂ (delta) = (target - actual) * actual
* (1 - actual). We can do this easily for the output as we have the
target and actual.

Sketch D2.15 delta

Arduino sketch

const int ledPin = 13;

const int buttonPin1 = 2;

const int buttonPin2 = 3;

int inputPin1;

int inputPin2;

const int truthTable = 4;

const int inputNodes = 2;

const int hiddenNodes = 4;

const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1][hiddenNodes];

float outputWeights[hiddenNodes + 1][outputNodes];

int randomisedTT[truthTable];

int a;

long trainingCycle;

int b;

int c;

int i;

float sum;

int j;

float hidden[hiddenNodes];

float output[outputNodes];

float error;

float outputDelta[outputNodes];

Nano module D unit #2 of 50 114 www.elegantAI.org

http://www.elegantAI.org

const int input[truthTable][inputNodes] = {

 { 0, 0 },

 { 1, 0 },

 { 0, 1 },

 { 1, 1 }

};

const int target[truthTable][outputNodes] = {

 { 0 },

 { 1 },

 { 1 },

 { 0 }

};

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin1, INPUT_PULLUP);

 pinMode(buttonPin2, INPUT_PULLUP);

 randomSeed(analogRead(4));

 for (a = 0; a < truthTable; a++)

 {

 randomisedTT[a] = a;

 }

}

void loop()

{

 if (training == true)

 {

 for (int i = 0; i < hiddenNodes; i++)

Nano module D unit #2 of 51 114 www.elegantAI.org

http://www.elegantAI.org

 {

 for (int j = 0; j <= inputNodes; j++)

 {

 hiddenWeights[j][i] = float(random(100))/100;

 }

 }

 for (int i = 0; i < outputNodes; i++)

 {

 for (int j = 0; j <= hiddenNodes; j++)

 {

 outputWeights[j][i] = float(random(100))/100;

 }

 }

 for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+
+)

 {

 for (a = 0; a < truthTable; a++)

 {

 b = random(truthTable);

 c = randomisedTT[a];

 randomisedTT[a] = randomisedTT[b];

 randomisedTT[b] = c;

 }

 error = 0;

 for (b = 0; b < truthTable; b++)

 {

 a = randomisedTT[b];

 for (i = 0; i < hiddenNodes; i++)

 {

 sum = hiddenWeights[inputNodes][i];

Nano module D unit #2 of 52 114 www.elegantAI.org

http://www.elegantAI.org

 for (j = 0; j < inputNodes; j++)

 {

 sum += input[a][j] * hiddenWeights[j][i];

 }

 hidden[i] = 1 / (1 + exp(-sum));

 }

 for (i = 0; i < outputNodes; i++)

 {

 sum = outputWeights[hiddenNodes][i];

 for (j = 0; j < hiddenNodes; j++)

 {

 sum += hidden[j] * outputWeights[j][i];

 }

 output[i] = 1 / (1 + exp(-sum));

 outputDelta[i] = (target[a][i] - output[i]) * output[i]
* (1 - output[i]);

 error += 0.5 * (target[a][i] - output[i]) * (target[a]
[i] - output[i]);

 }

 }

 }

 training = false;

 }

 buttons();

}

void buttons()

{

 inputPin1 = digitalRead(buttonPin1);

 inputPin2 = digitalRead(buttonPin2);

 if (inputPin1 == LOW || inputPin2 == LOW)

 {

Nano module D unit #2 of 53 114 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

The first step in gradient descent is to calculate a value called the delta
for each neuron. The delta reflects the magnitude of the error; the
greater the difference between the target value for the neuron and its
actual output, the smaller the change delta = (target - output) *
output * (1 - output).

 digitalWrite(ledPin, HIGH);

 }

 else

 {

 digitalWrite(ledPin, LOW);

 }

}

Nano module D unit #2 of 54 114 www.elegantAI.org

http://www.elegantAI.org

Here we will calculate the hidden delta, which is a bit more tricky as we
have no target to compare with. We keep a running total (sum) of the
output weights and output delta (which we have already
calculated).

Sketch D2.16 delta to hidden

Arduino sketch

const int ledPin = 13;

const int buttonPin1 = 2;

const int buttonPin2 = 3;

int inputPin1;

int inputPin2;

const int truthTable = 4;

const int inputNodes = 2;

const int hiddenNodes = 4;

const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1][hiddenNodes];

float outputWeights[hiddenNodes + 1][outputNodes];

int randomisedTT[truthTable];

int a;

long trainingCycle;

int b;

int c;

int i;

float sum;

int j;

float hidden[hiddenNodes];

float output[outputNodes];

float error;

float outputDelta[outputNodes];

float hiddenDelta[hiddenNodes];

Nano module D unit #2 of 55 114 www.elegantAI.org

http://www.elegantAI.org

const int input[truthTable][inputNodes] = {

 { 0, 0 },

 { 1, 0 },

 { 0, 1 },

 { 1, 1 }

};

const int target[truthTable][outputNodes] = {

 { 0 },

 { 1 },

 { 1 },

 { 0 }

};

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin1, INPUT_PULLUP);

 pinMode(buttonPin2, INPUT_PULLUP);

 randomSeed(analogRead(4));

 for (a = 0; a < truthTable; a++)

 {

 randomisedTT[a] = a;

 }

}

void loop()

{

 if (training == true)

 {

 for (int i = 0; i < hiddenNodes; i++)

Nano module D unit #2 of 56 114 www.elegantAI.org

http://www.elegantAI.org

 {

 for (int j = 0; j <= inputNodes; j++)

 {

 hiddenWeights[j][i] = float(random(100))/100;

 }

 }

 for (int i = 0; i < outputNodes; i++)

 {

 for (int j = 0; j <= hiddenNodes; j++)

 {

 outputWeights[j][i] = float(random(100))/100;

 }

 }

 for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+
+)

 {

 for (a = 0; a < truthTable; a++)

 {

 b = random(truthTable);

 c = randomisedTT[a];

 randomisedTT[a] = randomisedTT[b];

 randomisedTT[b] = c;

 }

 error = 0;

 for (b = 0; b < truthTable; b++)

 {

 a = randomisedTT[b];

 for (i = 0; i < hiddenNodes; i++)

 {

 sum = hiddenWeights[inputNodes][i];

Nano module D unit #2 of 57 114 www.elegantAI.org

http://www.elegantAI.org

 for (j = 0; j < inputNodes; j++)

 {

 sum += input[a][j] * hiddenWeights[j][i];

 }

 hidden[i] = 1 / (1 + exp(-sum));

 }

 for (i = 0; i < outputNodes; i++)

 {

 sum = outputWeights[hiddenNodes][i];

 for (j = 0; j < hiddenNodes; j++)

 {

 sum += hidden[j] * outputWeights[j][i];

 }

 output[i] = 1 / (1 + exp(-sum));

 outputDelta[i] = (target[a][i] - output[i]) * output[i]
* (1 - output[i]);

 error += 0.5 * (target[a][i] - output[i]) * (target[a]
[i] - output[i]);

 }

 for (i = 0; i < hiddenNodes; i++)

 {

 sum = 0;

 for (j = 0; j < outputNodes; j++)

 {

 sum += outputWeights[i][j] * outputDelta[j];

 }

 hiddenDelta[i] = sum * hidden[i] * (1 - hidden[i]);

 }

 }

 }

 training = false;

Nano module D unit #2 of 58 114 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We now have the hidden as well as the output delta difference or error.
We want to update the weights between the input through to the output
layer.

Calculating the delta at the hidden layer becomes slightly more involved as
there is no target to measure against. Instead, the magnitude of the error
for each hidden neuron is derived from the relationship between the
weights and the delta that was calculated for the output layer. For each
hidden neuron, the code steps through all of the output connections,
multiplying the weights by the deltas and keeping a running total: sum +=
output weights * output delta.

 }

 buttons();

}

void buttons()

{

 inputPin1 = digitalRead(buttonPin1);

 inputPin2 = digitalRead(buttonPin2);

 if (inputPin1 == LOW || inputPin2 == LOW)

 {

 digitalWrite(ledPin, HIGH);

 }

 else

 {

 digitalWrite(ledPin, LOW);

 }

}

Nano module D unit #2 of 59 114 www.elegantAI.org

http://www.elegantAI.org

Update the input to hidden weights. We introduce the learning rate so
that we can manage how much we change these weights. Also, add in the
momentum; otherwise, it may well get stuck on some local minimum.

Sketch D2.17 updating the hidden weights

Arduino sketch

const int ledPin = 13;

const int buttonPin1 = 2;

const int buttonPin2 = 3;

int inputPin1;

int inputPin2;

const int truthTable = 4;

const int inputNodes = 2;

const int hiddenNodes = 4;

const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1][hiddenNodes];

float outputWeights[hiddenNodes + 1][outputNodes];

int randomisedTT[truthTable];

int a;

long trainingCycle;

int b;

int c;

int i;

float sum;

int j;

float hidden[hiddenNodes];

float output[outputNodes];

float error;

float outputDelta[outputNodes];

float hiddenDelta[hiddenNodes];

float changeHiddenWeights[inputNodes + 1][hiddenNodes];

Nano module D unit #2 of 60 114 www.elegantAI.org

http://www.elegantAI.org

float learningRate = 0.5;

float momentum = 0.9;

const int input[truthTable][inputNodes] = {

 { 0, 0 },

 { 1, 0 },

 { 0, 1 },

 { 1, 1 }

};

const int target[truthTable][outputNodes] = {

 { 0 },

 { 1 },

 { 1 },

 { 0 }

};

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin1, INPUT_PULLUP);

 pinMode(buttonPin2, INPUT_PULLUP);

 randomSeed(analogRead(4));

 for (a = 0; a < truthTable; a++)

 {

 randomisedTT[a] = a;

 }

}

void loop()

{

 if (training == true)

Nano module D unit #2 of 61 114 www.elegantAI.org

http://www.elegantAI.org

 {

 for (int i = 0; i < hiddenNodes; i++)

 {

 for (int j = 0; j <= inputNodes; j++)

 {

 hiddenWeights[j][i] = float(random(100))/100;

 }

 }

 for (int i = 0; i < outputNodes; i++)

 {

 for (int j = 0; j <= hiddenNodes; j++)

 {

 outputWeights[j][i] = float(random(100))/100;

 }

 }

 for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+
+)

 {

 for (a = 0; a < truthTable; a++)

 {

 b = random(truthTable);

 c = randomisedTT[a];

 randomisedTT[a] = randomisedTT[b];

 randomisedTT[b] = c;

 }

 error = 0;

 for (b = 0; b < truthTable; b++)

 {

 a = randomisedTT[b];

 for (i = 0; i < hiddenNodes; i++)

Nano module D unit #2 of 62 114 www.elegantAI.org

http://www.elegantAI.org

 {

 sum = hiddenWeights[inputNodes][i];

 for (j = 0; j < inputNodes; j++)

 {

 sum += input[a][j] * hiddenWeights[j][i];

 }

 hidden[i] = 1 / (1 + exp(-sum));

 }

 for (i = 0; i < outputNodes; i++)

 {

 sum = outputWeights[hiddenNodes][i];

 for (j = 0; j < hiddenNodes; j++)

 {

 sum += hidden[j] * outputWeights[j][i];

 }

 output[i] = 1 / (1 + exp(-sum));

 outputDelta[i] = (target[a][i] - output[i]) * output[i]
* (1 - output[i]);

 error += 0.5 * (target[a][i] - output[i]) * (target[a]
[i] - output[i]);

 }

 for (i = 0; i < hiddenNodes; i++)

 {

 sum = 0;

 for (j = 0; j < outputNodes; j++)

 {

 sum += outputWeights[i][j] * outputDelta[j];

 }

 hiddenDelta[i] = sum * hidden[i] * (1 - hidden[i]);

 }

Nano module D unit #2 of 63 114 www.elegantAI.org

http://www.elegantAI.org

 for (i = 0; i < hiddenNodes; i++)

 {

 changeHiddenWeights[inputNodes][i] = learningRate *
hiddenDelta[i] + momentum * changeHiddenWeights[inputNodes][i];

 hiddenWeights[inputNodes][i] +=
changeHiddenWeights[inputNodes][i];

 for (j = 0; j < inputNodes; j++)

 {

 changeHiddenWeights[j][i] = learningRate * input[a]
[j] * hiddenDelta[i] + momentum * changeHiddenWeights[j][i];

 hiddenWeights[j][i] += changeHiddenWeights[j][i];

 }

 }

 }

 }

 training = false;

 }

 buttons();

}

void buttons()

{

 inputPin1 = digitalRead(buttonPin1);

 inputPin2 = digitalRead(buttonPin2);

 if (inputPin1 == LOW || inputPin2 == LOW)

 {

 digitalWrite(ledPin, HIGH);

 }

 else

 {

 digitalWrite(ledPin, LOW);

 }

}

Nano module D unit #2 of 64 114 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

There is a whole lot of code going on.

Nano module D unit #2 of 65 114 www.elegantAI.org

http://www.elegantAI.org

Now to do the same for the hidden to output weights.

Sketch D2.18 change the output weights

Arduino sketch

const int ledPin = 13;

const int buttonPin1 = 2;

const int buttonPin2 = 3;

int inputPin1;

int inputPin2;

const int truthTable = 4;

const int inputNodes = 2;

const int hiddenNodes = 4;

const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1][hiddenNodes];

float outputWeights[hiddenNodes + 1][outputNodes];

int randomisedTT[truthTable];

int a;

long trainingCycle;

int b;

int c;

int i;

float sum;

int j;

float hidden[hiddenNodes];

float output[outputNodes];

float error;

float outputDelta[outputNodes];

float hiddenDelta[hiddenNodes];

float changeHiddenWeights[inputNodes + 1][hiddenNodes];

float learningRate = 0.5;

float momentum = 0.9;

Nano module D unit #2 of 66 114 www.elegantAI.org

http://www.elegantAI.org

float changeOutputWeights[hiddenNodes + 1][outputNodes];

const int input[truthTable][inputNodes] = {

 { 0, 0 },

 { 1, 0 },

 { 0, 1 },

 { 1, 1 }

};

const int target[truthTable][outputNodes] = {

 { 0 },

 { 1 },

 { 1 },

 { 0 }

};

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin1, INPUT_PULLUP);

 pinMode(buttonPin2, INPUT_PULLUP);

 randomSeed(analogRead(4));

 for (a = 0; a < truthTable; a++)

 {

 randomisedTT[a] = a;

 }

}

void loop()

{

 if (training == true)

 {

Nano module D unit #2 of 67 114 www.elegantAI.org

http://www.elegantAI.org

 for (int i = 0; i < hiddenNodes; i++)

 {

 for (int j = 0; j <= inputNodes; j++)

 {

 hiddenWeights[j][i] = float(random(100))/100;

 }

 }

 for (int i = 0; i < outputNodes; i++)

 {

 for (int j = 0; j <= hiddenNodes; j++)

 {

 outputWeights[j][i] = float(random(100))/100;

 }

 }

 for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+
+)

 {

 for (a = 0; a < truthTable; a++)

 {

 b = random(truthTable);

 c = randomisedTT[a];

 randomisedTT[a] = randomisedTT[b];

 randomisedTT[b] = c;

 }

 error = 0;

 for (b = 0; b < truthTable; b++)

 {

 a = randomisedTT[b];

 for (i = 0; i < hiddenNodes; i++)

 {

Nano module D unit #2 of 68 114 www.elegantAI.org

http://www.elegantAI.org

 sum = hiddenWeights[inputNodes][i];

 for (j = 0; j < inputNodes; j++)

 {

 sum += input[a][j] * hiddenWeights[j][i];

 }

 hidden[i] = 1 / (1 + exp(-sum));

 }

 for (i = 0; i < outputNodes; i++)

 {

 sum = outputWeights[hiddenNodes][i];

 for (j = 0; j < hiddenNodes; j++)

 {

 sum += hidden[j] * outputWeights[j][i];

 }

 output[i] = 1 / (1 + exp(-sum));

 outputDelta[i] = (target[a][i] - output[i]) * output[i]
* (1 - output[i]);

 error += 0.5 * (target[a][i] - output[i]) * (target[a]
[i] - output[i]);

 }

 for (i = 0; i < hiddenNodes; i++)

 {

 sum = 0;

 for (j = 0; j < outputNodes; j++)

 {

 sum += outputWeights[i][j] * outputDelta[j];

 }

 hiddenDelta[i] = sum * hidden[i] * (1 - hidden[i]);

 }

 for (i = 0; i < hiddenNodes; i++)

Nano module D unit #2 of 69 114 www.elegantAI.org

http://www.elegantAI.org

 {

 changeHiddenWeights[inputNodes][i] = learningRate *
hiddenDelta[i] + momentum * changeHiddenWeights[inputNodes][i];

 hiddenWeights[inputNodes][i] +=
changeHiddenWeights[inputNodes][i];

 for (j = 0; j < inputNodes; j++)

 {

 changeHiddenWeights[j][i] = learningRate * input[a]
[j] * hiddenDelta[i] + momentum * changeHiddenWeights[j][i];

 hiddenWeights[j][i] += changeHiddenWeights[j][i];

 }

 }

 for (i = 0; i < outputNodes; i++)

 {

 changeOutputWeights[hiddenNodes][i] = learningRate *
outputDelta[i] + momentum * changeOutputWeights[hiddenNodes][i];

 outputWeights[hiddenNodes][i] +=
changeOutputWeights[hiddenNodes][i];

 for (j = 0; j < hiddenNodes; j++)

 {

 changeOutputWeights[j][i] = learningRate * hidden[j]
* outputDelta[i] + momentum * changeOutputWeights[j][i];

 outputWeights[j][i] += changeOutputWeights[j][i];

 }

 }

 }

 }

 training = false;

 }

 buttons();

}

Nano module D unit #2 of 70 114 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

This may take some working through.

void buttons()

{

 inputPin1 = digitalRead(buttonPin1);

 inputPin2 = digitalRead(buttonPin2);

 if (inputPin1 == LOW || inputPin2 == LOW)

 {

 digitalWrite(ledPin, HIGH);

 }

 else

 {

 digitalWrite(ledPin, LOW);

 }

}

Nano module D unit #2 of 71 114 www.elegantAI.org

http://www.elegantAI.org

What is the error? We can send the final error to the serial monitor. This
is the final error after 10000 iterations. Press the reset button to see it
train a number of times.

Sketch D2.19 seeing the error

Arduino sketch

const int ledPin = 13;

const int buttonPin1 = 2;

const int buttonPin2 = 3;

int inputPin1;

int inputPin2;

const int truthTable = 4;

const int inputNodes = 2;

const int hiddenNodes = 4;

const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1][hiddenNodes];

float outputWeights[hiddenNodes + 1][outputNodes];

int randomisedTT[truthTable];

int a;

long trainingCycle;

int b;

int c;

int i;

float sum;

int j;

float hidden[hiddenNodes];

float output[outputNodes];

float error;

float outputDelta[outputNodes];

float hiddenDelta[hiddenNodes];

float changeHiddenWeights[inputNodes + 1][hiddenNodes];

Nano module D unit #2 of 72 114 www.elegantAI.org

http://www.elegantAI.org

float learningRate = 0.5;

float momentum = 0.9;

float changeOutputWeights[hiddenNodes + 1][outputNodes];

const int input[truthTable][inputNodes] = {

 { 0, 0 },

 { 1, 0 },

 { 0, 1 },

 { 1, 1 }

};

const int target[truthTable][outputNodes] = {

 { 0 },

 { 1 },

 { 1 },

 { 0 }

};

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(buttonPin1, INPUT_PULLUP);

 pinMode(buttonPin2, INPUT_PULLUP);

 randomSeed(analogRead(4));

 for (a = 0; a < truthTable; a++)

 {

 randomisedTT[a] = a;

 }

}

void loop()

{

Nano module D unit #2 of 73 114 www.elegantAI.org

http://www.elegantAI.org

 if (training == true)

 {

 for (int i = 0; i < hiddenNodes; i++)

 {

 for (int j = 0; j <= inputNodes; j++)

 {

 hiddenWeights[j][i] = float(random(100))/100;

 }

 }

 for (int i = 0; i < outputNodes; i++)

 {

 for (int j = 0; j <= hiddenNodes; j++)

 {

 outputWeights[j][i] = float(random(100))/100;

 }

 }

 for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+
+)

 {

 for (a = 0; a < truthTable; a++)

 {

 b = random(truthTable);

 c = randomisedTT[a];

 randomisedTT[a] = randomisedTT[b];

 randomisedTT[b] = c;

 }

 error = 0;

 for (b = 0; b < truthTable; b++)

 {

 a = randomisedTT[b];

Nano module D unit #2 of 74 114 www.elegantAI.org

http://www.elegantAI.org

 for (i = 0; i < hiddenNodes; i++)

 {

 sum = hiddenWeights[inputNodes][i];

 for (j = 0; j < inputNodes; j++)

 {

 sum += input[a][j] * hiddenWeights[j][i];

 }

 hidden[i] = 1 / (1 + exp(-sum));

 }

 for (i = 0; i < outputNodes; i++)

 {

 sum = outputWeights[hiddenNodes][i];

 for (j = 0; j < hiddenNodes; j++)

 {

 sum += hidden[j] * outputWeights[j][i];

 }

 output[i] = 1 / (1 + exp(-sum));

 outputDelta[i] = (target[a][i] - output[i]) * output[i]
* (1 - output[i]);

 error += 0.5 * (target[a][i] - output[i]) * (target[a]
[i] - output[i]);

 }

 for (i = 0; i < hiddenNodes; i++)

 {

 sum = 0;

 for (j = 0; j < outputNodes; j++)

 {

 sum += outputWeights[i][j] * outputDelta[j];

 }

 hiddenDelta[i] = sum * hidden[i] * (1 - hidden[i]);

 }

Nano module D unit #2 of 75 114 www.elegantAI.org

http://www.elegantAI.org

 for (i = 0; i < hiddenNodes; i++)

 {

 changeHiddenWeights[inputNodes][i] = learningRate *
hiddenDelta[i] + momentum * changeHiddenWeights[inputNodes][i];

 hiddenWeights[inputNodes][i] +=
changeHiddenWeights[inputNodes][i];

 for (j = 0; j < inputNodes; j++)

 {

 changeHiddenWeights[j][i] = learningRate * input[a]
[j] * hiddenDelta[i] + momentum * changeHiddenWeights[j][i];

 hiddenWeights[j][i] += changeHiddenWeights[j][i];

 }

 }

 for (i = 0; i < outputNodes; i++)

 {

 changeOutputWeights[hiddenNodes][i] = learningRate *
outputDelta[i] + momentum * changeOutputWeights[hiddenNodes][i];

 outputWeights[hiddenNodes][i] +=
changeOutputWeights[hiddenNodes][i];

 for (j = 0; j < hiddenNodes; j++)

 {

 changeOutputWeights[j][i] = learningRate * hidden[j]
* outputDelta[i] + momentum * changeOutputWeights[j][i];

 outputWeights[j][i] += changeOutputWeights[j][i];

 }

 }

 }

 }

 training = false;

 Serial.print(" error = ");

 Serial.println(error, 5);

 }

Nano module D unit #2 of 76 114 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

The final error is around 0.00004 and 0.00005, which is plenty low
enough.

 buttons();

}

void buttons()

{

 inputPin1 = digitalRead(buttonPin1);

 inputPin2 = digitalRead(buttonPin2);

 if (inputPin1 == LOW || inputPin2 == LOW)

 {

 digitalWrite(ledPin, HIGH);

 }

 else

 {

 digitalWrite(ledPin, LOW);

 }

}

Nano module D unit #2 of 77 114 www.elegantAI.org

http://www.elegantAI.org

Nano module D unit #2 of 78 114 www.elegantAI.org

Figure D2.19

http://www.elegantAI.org

One problem we have is that the training takes a few seconds, but we
have no indication as to when the training is finished. We can do something
about that by using the RGB LED that is built into the board.

Sketch D2.20 RGB LED training finished

Arduino sketch

const int ledPin = 13;

const int buttonPin1 = 2;

const int buttonPin2 = 3;

int inputPin1;

int inputPin2;

const int truthTable = 4;

const int inputNodes = 2;

const int hiddenNodes = 4;

const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1][hiddenNodes];

float outputWeights[hiddenNodes + 1][outputNodes];

int randomisedTT[truthTable];

int a;

long trainingCycle;

int b;

int c;

int i;

float sum;

int j;

float hidden[hiddenNodes];

float output[outputNodes];

float error;

float outputDelta[outputNodes];

float hiddenDelta[hiddenNodes];

float changeHiddenWeights[inputNodes + 1][hiddenNodes];

Nano module D unit #2 of 79 114 www.elegantAI.org

http://www.elegantAI.org

float learningRate = 0.5;

float momentum = 0.9;

float changeOutputWeights[hiddenNodes + 1][outputNodes];

const int input[truthTable][inputNodes] = {

 { 0, 0 },

 { 1, 0 },

 { 0, 1 },

 { 1, 1 }

};

const int target[truthTable][outputNodes] = {

 { 0 },

 { 1 },

 { 1 },

 { 0 }

};

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(LEDR, OUTPUT);

 pinMode(LEDG, OUTPUT);

 pinMode(buttonPin1, INPUT_PULLUP);

 pinMode(buttonPin2, INPUT_PULLUP);

 randomSeed(analogRead(4));

 for (a = 0; a < truthTable; a++)

 {

 randomisedTT[a] = a;

 }

}

Nano module D unit #2 of 80 114 www.elegantAI.org

http://www.elegantAI.org

void loop()

{

 if (training == true)

 {

 digitalWrite(LEDR, LOW);

 digitalWrite(LEDG, HIGH);

 for (int i = 0; i < hiddenNodes; i++)

 {

 for (int j = 0; j <= inputNodes; j++)

 {

 hiddenWeights[j][i] = float(random(100))/100;

 }

 }

 for (int i = 0; i < outputNodes; i++)

 {

 for (int j = 0; j <= hiddenNodes; j++)

 {

 outputWeights[j][i] = float(random(100))/100;

 }

 }

 for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+
+)

 {

 for (a = 0; a < truthTable; a++)

 {

 b = random(truthTable);

 c = randomisedTT[a];

 randomisedTT[a] = randomisedTT[b];

 randomisedTT[b] = c;

 }

 error = 0;

Nano module D unit #2 of 81 114 www.elegantAI.org

http://www.elegantAI.org

 for (b = 0; b < truthTable; b++)

 {

 a = randomisedTT[b];

 for (i = 0; i < hiddenNodes; i++)

 {

 sum = hiddenWeights[inputNodes][i];

 for (j = 0; j < inputNodes; j++)

 {

 sum += input[a][j] * hiddenWeights[j][i];

 }

 hidden[i] = 1 / (1 + exp(-sum));

 }

 for (i = 0; i < outputNodes; i++)

 {

 sum = outputWeights[hiddenNodes][i];

 for (j = 0; j < hiddenNodes; j++)

 {

 sum += hidden[j] * outputWeights[j][i];

 }

 output[i] = 1 / (1 + exp(-sum));

 outputDelta[i] = (target[a][i] - output[i]) * output[i]
* (1 - output[i]);

 error += 0.5 * (target[a][i] - output[i]) * (target[a]
[i] - output[i]);

 }

 for (i = 0; i < hiddenNodes; i++)

 {

 sum = 0;

 for (j = 0; j < outputNodes; j++)

 {

Nano module D unit #2 of 82 114 www.elegantAI.org

http://www.elegantAI.org

 sum += outputWeights[i][j] * outputDelta[j];

 }

 hiddenDelta[i] = sum * hidden[i] * (1 - hidden[i]);

 }

 for (i = 0; i < hiddenNodes; i++)

 {

 changeHiddenWeights[inputNodes][i] = learningRate *
hiddenDelta[i] + momentum * changeHiddenWeights[inputNodes][i];

 hiddenWeights[inputNodes][i] +=
changeHiddenWeights[inputNodes][i];

 for (j = 0; j < inputNodes; j++)

 {

 changeHiddenWeights[j][i] = learningRate * input[a]
[j] * hiddenDelta[i] + momentum * changeHiddenWeights[j][i];

 hiddenWeights[j][i] += changeHiddenWeights[j][i];

 }

 }

 for (i = 0; i < outputNodes; i++)

 {

 changeOutputWeights[hiddenNodes][i] = learningRate *
outputDelta[i] + momentum * changeOutputWeights[hiddenNodes][i];

 outputWeights[hiddenNodes][i] +=
changeOutputWeights[hiddenNodes][i];

 for (j = 0; j < hiddenNodes; j++)

 {

 changeOutputWeights[j][i] = learningRate * hidden[j]
* outputDelta[i] + momentum * changeOutputWeights[j][i];

 outputWeights[j][i] += changeOutputWeights[j][i];

 }

 }

 }

 }

Nano module D unit #2 of 83 114 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

It gives you a visual clue when training is finished.

 training = false;

 digitalWrite(LEDR, HIGH);

 digitalWrite(LEDG, LOW);

 Serial.print(" error = ");

 Serial.println(error, 5);

 }

 buttons();

}

void buttons()

{

 inputPin1 = digitalRead(buttonPin1);

 inputPin2 = digitalRead(buttonPin2);

 if (inputPin1 == LOW || inputPin2 == LOW)

 {

 digitalWrite(ledPin, HIGH);

 }

 else

 {

 digitalWrite(ledPin, LOW);

 }

}

Nano module D unit #2 of 84 114 www.elegantAI.org

http://www.elegantAI.org

Now that the training has finished, we can predict the outcome for each
row of the truth table. We have the final weights (hidden and output), so
we can determine the final output for a particular set of inputs. We will
use the variable a to keep track of which set of inputs we want. Before we
launch into the predicting business, we need to determine which
combination of buttons relate to which part of the input[] array.

❗ Remove:

 if (inputPin1 == LOW || inputPin2 == LOW)
 {
 digitalWrite(ledPin, HIGH);
 }
 else
 {
 digitalWrite(ledPin, LOW);
 }

Sketch D2.21 truth table buttons

Arduino sketch

const int ledPin = 13;

const int buttonPin1 = 2;

const int buttonPin2 = 3;

int inputPin1;

int inputPin2;

const int truthTable = 4;

const int inputNodes = 2;

const int hiddenNodes = 4;

const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1][hiddenNodes];

float outputWeights[hiddenNodes + 1][outputNodes];

int randomisedTT[truthTable];

int a;

long trainingCycle;

int b;

Nano module D unit #2 of 85 114 www.elegantAI.org

http://www.elegantAI.org

int c;

int i;

float sum;

int j;

float hidden[hiddenNodes];

float output[outputNodes];

float error;

float outputDelta[outputNodes];

float hiddenDelta[hiddenNodes];

float changeHiddenWeights[inputNodes + 1][hiddenNodes];

float learningRate = 0.5;

float momentum = 0.9;

float changeOutputWeights[hiddenNodes + 1][outputNodes];

const int input[truthTable][inputNodes] = {

 { 0, 0 },

 { 1, 0 },

 { 0, 1 },

 { 1, 1 }

};

const int target[truthTable][outputNodes] = {

 { 0 },

 { 1 },

 { 1 },

 { 0 }

};

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(LEDR, OUTPUT);

Nano module D unit #2 of 86 114 www.elegantAI.org

http://www.elegantAI.org

 pinMode(LEDG, OUTPUT);

 pinMode(buttonPin1, INPUT_PULLUP);

 pinMode(buttonPin2, INPUT_PULLUP);

 randomSeed(analogRead(4));

 for (a = 0; a < truthTable; a++)

 {

 randomisedTT[a] = a;

 }

}

void loop()

{

 if (training == true)

 {

 digitalWrite(LEDR, LOW);

 digitalWrite(LEDG, HIGH);

 for (int i = 0; i < hiddenNodes; i++)

 {

 for (int j = 0; j <= inputNodes; j++)

 {

 hiddenWeights[j][i] = float(random(100))/100;

 }

 }

 for (int i = 0; i < outputNodes; i++)

 {

 for (int j = 0; j <= hiddenNodes; j++)

 {

 outputWeights[j][i] = float(random(100))/100;

 }

 }

Nano module D unit #2 of 87 114 www.elegantAI.org

http://www.elegantAI.org

 for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+
+)

 {

 for (a = 0; a < truthTable; a++)

 {

 b = random(truthTable);

 c = randomisedTT[a];

 randomisedTT[a] = randomisedTT[b];

 randomisedTT[b] = c;

 }

 error = 0;

 for (b = 0; b < truthTable; b++)

 {

 a = randomisedTT[b];

 for (i = 0; i < hiddenNodes; i++)

 {

 sum = hiddenWeights[inputNodes][i];

 for (j = 0; j < inputNodes; j++)

 {

 sum += input[a][j] * hiddenWeights[j][i];

 }

 hidden[i] = 1 / (1 + exp(-sum));

 }

 for (i = 0; i < outputNodes; i++)

 {

 sum = outputWeights[hiddenNodes][i];

 for (j = 0; j < hiddenNodes; j++)

 {

 sum += hidden[j] * outputWeights[j][i];

 }

 output[i] = 1 / (1 + exp(-sum));

Nano module D unit #2 of 88 114 www.elegantAI.org

http://www.elegantAI.org

 outputDelta[i] = (target[a][i] - output[i]) * output[i]
* (1 - output[i]);

 error += 0.5 * (target[a][i] - output[i]) * (target[a]
[i] - output[i]);

 }

 for (i = 0; i < hiddenNodes; i++)

 {

 sum = 0;

 for (j = 0; j < outputNodes; j++)

 {

 sum += outputWeights[i][j] * outputDelta[j];

 }

 hiddenDelta[i] = sum * hidden[i] * (1 - hidden[i]);

 }

 for (i = 0; i < hiddenNodes; i++)

 {

 changeHiddenWeights[inputNodes][i] = learningRate *
hiddenDelta[i] + momentum * changeHiddenWeights[inputNodes][i];

 hiddenWeights[inputNodes][i] +=
changeHiddenWeights[inputNodes][i];

 for (j = 0; j < inputNodes; j++)

 {

 changeHiddenWeights[j][i] = learningRate * input[a]
[j] * hiddenDelta[i] + momentum * changeHiddenWeights[j][i];

 hiddenWeights[j][i] += changeHiddenWeights[j][i];

 }

 }

 for (i = 0; i < outputNodes; i++)

 {

 changeOutputWeights[hiddenNodes][i] = learningRate *
outputDelta[i] + momentum * changeOutputWeights[hiddenNodes][i];

Nano module D unit #2 of 89 114 www.elegantAI.org

http://www.elegantAI.org

 outputWeights[hiddenNodes][i] +=
changeOutputWeights[hiddenNodes][i];

 for (j = 0; j < hiddenNodes; j++)

 {

 changeOutputWeights[j][i] = learningRate * hidden[j]
* outputDelta[i] + momentum * changeOutputWeights[j][i];

 outputWeights[j][i] += changeOutputWeights[j][i];

 }

 }

 }

 }

 training = false;

 digitalWrite(LEDR, HIGH);

 digitalWrite(LEDG, LOW);

 Serial.print(" error = ");

 Serial.println(error, 5);

 }

 buttons();

}

void buttons()

{

 inputPin1 = digitalRead(buttonPin1);

 inputPin2 = digitalRead(buttonPin2);

 if (inputPin1 == LOW && inputPin2 == HIGH)

 {

 a = 1;

 }

 else if (inputPin1 == HIGH && inputPin2 == LOW)

 {

 a = 2;

 }

 else if (inputPin1 == LOW && inputPin2 == LOW)

Nano module D unit #2 of 90 114 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

The buttons aren’t connected to the LED anymore.

 {

 a = 3;

 }

 else

 {

 a = 0;

 }

}

Nano module D unit #2 of 91 114 www.elegantAI.org

http://www.elegantAI.org

We can now predict the results by running the input array through the
neural network. The input array passes through the hidden layer, then
through to the output layer, at which point it passes through the sigmoid
activation function to give us a value between 0 and 1.

First inputs to the hidden layer.

Sketch D2.22 inputs to hidden

Arduino sketch

const int ledPin = 13;

const int buttonPin1 = 2;

const int buttonPin2 = 3;

int inputPin1;

int inputPin2;

const int truthTable = 4;

const int inputNodes = 2;

const int hiddenNodes = 4;

const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1][hiddenNodes];

float outputWeights[hiddenNodes + 1][outputNodes];

int randomisedTT[truthTable];

int a;

long trainingCycle;

int b;

int c;

int i;

float sum;

int j;

float hidden[hiddenNodes];

float output[outputNodes];

float error;

float outputDelta[outputNodes];

Nano module D unit #2 of 92 114 www.elegantAI.org

http://www.elegantAI.org

float hiddenDelta[hiddenNodes];

float changeHiddenWeights[inputNodes + 1][hiddenNodes];

float learningRate = 0.5;

float momentum = 0.9;

float changeOutputWeights[hiddenNodes + 1][outputNodes];

const int input[truthTable][inputNodes] = {

 { 0, 0 },

 { 1, 0 },

 { 0, 1 },

 { 1, 1 }

};

const int target[truthTable][outputNodes] = {

 { 0 },

 { 1 },

 { 1 },

 { 0 }

};

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(LEDR, OUTPUT);

 pinMode(LEDG, OUTPUT);

 pinMode(buttonPin1, INPUT_PULLUP);

 pinMode(buttonPin2, INPUT_PULLUP);

 randomSeed(analogRead(4));

 for (a = 0; a < truthTable; a++)

 {

 randomisedTT[a] = a;

 }

Nano module D unit #2 of 93 114 www.elegantAI.org

http://www.elegantAI.org

}

void loop()

{

 if (training == true)

 {

 digitalWrite(LEDR, LOW);

 digitalWrite(LEDG, HIGH);

 for (int i = 0; i < hiddenNodes; i++)

 {

 for (int j = 0; j <= inputNodes; j++)

 {

 hiddenWeights[j][i] = float(random(100))/100;

 }

 }

 for (int i = 0; i < outputNodes; i++)

 {

 for (int j = 0; j <= hiddenNodes; j++)

 {

 outputWeights[j][i] = float(random(100))/100;

 }

 }

 for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+
+)

 {

 for (a = 0; a < truthTable; a++)

 {

 b = random(truthTable);

 c = randomisedTT[a];

 randomisedTT[a] = randomisedTT[b];

 randomisedTT[b] = c;

Nano module D unit #2 of 94 114 www.elegantAI.org

http://www.elegantAI.org

 }

 error = 0;

 for (b = 0; b < truthTable; b++)

 {

 a = randomisedTT[b];

 for (i = 0; i < hiddenNodes; i++)

 {

 sum = hiddenWeights[inputNodes][i];

 for (j = 0; j < inputNodes; j++)

 {

 sum += input[a][j] * hiddenWeights[j][i];

 }

 hidden[i] = 1 / (1 + exp(-sum));

 }

 for (i = 0; i < outputNodes; i++)

 {

 sum = outputWeights[hiddenNodes][i];

 for (j = 0; j < hiddenNodes; j++)

 {

 sum += hidden[j] * outputWeights[j][i];

 }

 output[i] = 1 / (1 + exp(-sum));

 outputDelta[i] = (target[a][i] - output[i]) * output[i]
* (1 - output[i]);

 error += 0.5 * (target[a][i] - output[i]) * (target[a]
[i] - output[i]);

 }

 for (i = 0; i < hiddenNodes; i++)

 {

 sum = 0;

Nano module D unit #2 of 95 114 www.elegantAI.org

http://www.elegantAI.org

 for (j = 0; j < outputNodes; j++)

 {

 sum += outputWeights[i][j] * outputDelta[j];

 }

 hiddenDelta[i] = sum * hidden[i] * (1 - hidden[i]);

 }

 for (i = 0; i < hiddenNodes; i++)

 {

 changeHiddenWeights[inputNodes][i] = learningRate *
hiddenDelta[i] + momentum * changeHiddenWeights[inputNodes][i];

 hiddenWeights[inputNodes][i] +=
changeHiddenWeights[inputNodes][i];

 for (j = 0; j < inputNodes; j++)

 {

 changeHiddenWeights[j][i] = learningRate * input[a]
[j] * hiddenDelta[i] + momentum * changeHiddenWeights[j][i];

 hiddenWeights[j][i] += changeHiddenWeights[j][i];

 }

 }

 for (i = 0; i < outputNodes; i++)

 {

 changeOutputWeights[hiddenNodes][i] = learningRate *
outputDelta[i] + momentum * changeOutputWeights[hiddenNodes][i];

 outputWeights[hiddenNodes][i] +=
changeOutputWeights[hiddenNodes][i];

 for (j = 0; j < hiddenNodes; j++)

 {

 changeOutputWeights[j][i] = learningRate * hidden[j]
* outputDelta[i] + momentum * changeOutputWeights[j][i];

 outputWeights[j][i] += changeOutputWeights[j][i];

 }

 }

Nano module D unit #2 of 96 114 www.elegantAI.org

http://www.elegantAI.org

 }

 }

 training = false;

 digitalWrite(LEDR, HIGH);

 digitalWrite(LEDG, LOW);

 Serial.print(" error = ");

 Serial.println(error, 5);

 }

 buttons();

}

void buttons()

{

 inputPin1 = digitalRead(buttonPin1);

 inputPin2 = digitalRead(buttonPin2);

 if (inputPin1 == LOW && inputPin2 == HIGH)

 {

 a = 1;

 }

 else if (inputPin1 == HIGH && inputPin2 == LOW)

 {

 a = 2;

 }

 else if (inputPin1 == LOW && inputPin2 == LOW)

 {

 a = 3;

 }

 else

 {

 a = 0;

 }

 for (i = 0; i < hiddenNodes; i++)

Nano module D unit #2 of 97 114 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

We are not training (no backpropagation), just feeding the data forward
through the already trained model.

 {

 sum = hiddenWeights[inputNodes][i];

 for (j = 0; j < inputNodes; j++)

 {

 sum += input[a][j] * hiddenWeights[j][i];

 }

 hidden[i] = 1 / (1 + exp(-sum));

 }

}

Nano module D unit #2 of 98 114 www.elegantAI.org

http://www.elegantAI.org

Final piece of the jigsaw, we move the hidden outputs through to the
output layer and calculate the final result (output). We will print them to
the serial monitor to five decimal places. When you press one of the
buttons, it should read nearly one; pressing both buttons simultaneously
should bring it back to almost zero.

Sketch D2.23 hidden to output

Arduino sketch

const int ledPin = 13;

const int buttonPin1 = 2;

const int buttonPin2 = 3;

int inputPin1;

int inputPin2;

const int truthTable = 4;

const int inputNodes = 2;

const int hiddenNodes = 4;

const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1][hiddenNodes];

float outputWeights[hiddenNodes + 1][outputNodes];

int randomisedTT[truthTable];

int a;

long trainingCycle;

int b;

int c;

int i;

float sum;

int j;

float hidden[hiddenNodes];

float output[outputNodes];

float error;

float outputDelta[outputNodes];

float hiddenDelta[hiddenNodes];
Nano module D unit #2 of 99 114 www.elegantAI.org

http://www.elegantAI.org

float changeHiddenWeights[inputNodes + 1][hiddenNodes];

float learningRate = 0.5;

float momentum = 0.9;

float changeOutputWeights[hiddenNodes + 1][outputNodes];

const int input[truthTable][inputNodes] = {

 { 0, 0 },

 { 1, 0 },

 { 0, 1 },

 { 1, 1 }

};

const int target[truthTable][outputNodes] = {

 { 0 },

 { 1 },

 { 1 },

 { 0 }

};

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(LEDR, OUTPUT);

 pinMode(LEDG, OUTPUT);

 pinMode(buttonPin1, INPUT_PULLUP);

 pinMode(buttonPin2, INPUT_PULLUP);

 randomSeed(analogRead(4));

 for (a = 0; a < truthTable; a++)

 {

 randomisedTT[a] = a;

 }

}

Nano module D unit #2 of 100 114 www.elegantAI.org

http://www.elegantAI.org

void loop()

{

 if (training == true)

 {

 digitalWrite(LEDR, LOW);

 digitalWrite(LEDG, HIGH);

 for (int i = 0; i < hiddenNodes; i++)

 {

 for (int j = 0; j <= inputNodes; j++)

 {

 hiddenWeights[j][i] = float(random(100))/100;

 }

 }

 for (int i = 0; i < outputNodes; i++)

 {

 for (int j = 0; j <= hiddenNodes; j++)

 {

 outputWeights[j][i] = float(random(100))/100;

 }

 }

 for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+
+)

 {

 for (a = 0; a < truthTable; a++)

 {

 b = random(truthTable);

 c = randomisedTT[a];

 randomisedTT[a] = randomisedTT[b];

 randomisedTT[b] = c;

 }

Nano module D unit #2 of 101 114 www.elegantAI.org

http://www.elegantAI.org

 error = 0;

 for (b = 0; b < truthTable; b++)

 {

 a = randomisedTT[b];

 for (i = 0; i < hiddenNodes; i++)

 {

 sum = hiddenWeights[inputNodes][i];

 for (j = 0; j < inputNodes; j++)

 {

 sum += input[a][j] * hiddenWeights[j][i];

 }

 hidden[i] = 1 / (1 + exp(-sum));

 }

 for (i = 0; i < outputNodes; i++)

 {

 sum = outputWeights[hiddenNodes][i];

 for (j = 0; j < hiddenNodes; j++)

 {

 sum += hidden[j] * outputWeights[j][i];

 }

 output[i] = 1 / (1 + exp(-sum));

 outputDelta[i] = (target[a][i] - output[i]) * output[i]
* (1 - output[i]);

 error += 0.5 * (target[a][i] - output[i]) * (target[a]
[i] - output[i]);

 }

 for (i = 0; i < hiddenNodes; i++)

 {

 sum = 0;

 for (j = 0; j < outputNodes; j++)

Nano module D unit #2 of 102 114 www.elegantAI.org

http://www.elegantAI.org

 {

 sum += outputWeights[i][j] * outputDelta[j];

 }

 hiddenDelta[i] = sum * hidden[i] * (1 - hidden[i]);

 }

 for (i = 0; i < hiddenNodes; i++)

 {

 changeHiddenWeights[inputNodes][i] = learningRate *
hiddenDelta[i] + momentum * changeHiddenWeights[inputNodes][i];

 hiddenWeights[inputNodes][i] +=
changeHiddenWeights[inputNodes][i];

 for (j = 0; j < inputNodes; j++)

 {

 changeHiddenWeights[j][i] = learningRate * input[a]
[j] * hiddenDelta[i] + momentum * changeHiddenWeights[j][i];

 hiddenWeights[j][i] += changeHiddenWeights[j][i];

 }

 }

 for (i = 0; i < outputNodes; i++)

 {

 changeOutputWeights[hiddenNodes][i] = learningRate *
outputDelta[i] + momentum * changeOutputWeights[hiddenNodes][i];

 outputWeights[hiddenNodes][i] +=
changeOutputWeights[hiddenNodes][i];

 for (j = 0; j < hiddenNodes; j++)

 {

 changeOutputWeights[j][i] = learningRate * hidden[j]
* outputDelta[i] + momentum * changeOutputWeights[j][i];

 outputWeights[j][i] += changeOutputWeights[j][i];

 }

 }

 }

Nano module D unit #2 of 103 114 www.elegantAI.org

http://www.elegantAI.org

 }

 training = false;

 digitalWrite(LEDR, HIGH);

 digitalWrite(LEDG, LOW);

 Serial.print(" error = ");

 Serial.println(error, 5);

 }

 buttons();

}

void buttons()

{

 inputPin1 = digitalRead(buttonPin1);

 inputPin2 = digitalRead(buttonPin2);

 if (inputPin1 == LOW && inputPin2 == HIGH)

 {

 a = 1;

 }

 else if (inputPin1 == HIGH && inputPin2 == LOW)

 {

 a = 2;

 }

 else if (inputPin1 == LOW && inputPin2 == LOW)

 {

 a = 3;

 }

 else

 {

 a = 0;

 }

 for (i = 0; i < hiddenNodes; i++)

 {

Nano module D unit #2 of 104 114 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

The feed forward reaches the final output neuron. Figure D2.23a shows
the results for no button pressed (LED off). Figure D2.23b is one button
pressed (LED on). You should get an equally low number when both are
pressed (LED effectively off).

 sum = hiddenWeights[inputNodes][i];

 for (j = 0; j < inputNodes; j++)

 {

 sum += input[a][j] * hiddenWeights[j][i];

 }

 hidden[i] = 1 / (1 + exp(-sum));

 }

 for (i = 0; i < outputNodes; i++)

 {

 sum = outputWeights[hiddenNodes][i];

 for (j = 0; j < hiddenNodes; j++)

 {

 sum += hidden[j] * outputWeights[j][i];

 }

 output[i] = 1 / (1 + exp(-sum));

 Serial.println(output[i], 5);

 }

}

Nano module D unit #2 of 105 114 www.elegantAI.org

http://www.elegantAI.org

Nano module D unit #2 of 106 114 www.elegantAI.org

Figure D2.23a

http://www.elegantAI.org

Nano module D unit #2 of 107 114 www.elegantAI.org

Figure D2.23b

http://www.elegantAI.org

We are going to take the prediction and convert it into an LED. We want it
in the format of an integer between 0 and 255. To do that, we convert the
float to an integer and multiply it by 255. For some instances, it might
glow very slightly when it should be off.

Sketch D2.24 output to LED

Arduino sketch

const int ledPin = 13;

const int buttonPin1 = 2;

const int buttonPin2 = 3;

int inputPin1;

int inputPin2;

const int truthTable = 4;

const int inputNodes = 2;

const int hiddenNodes = 4;

const int outputNodes = 1;

bool training = true;

float hiddenWeights[inputNodes + 1][hiddenNodes];

float outputWeights[hiddenNodes + 1][outputNodes];

int randomisedTT[truthTable];

int a;

long trainingCycle;

int b;

int c;

int i;

float sum;

int j;

float hidden[hiddenNodes];

float output[outputNodes];

float error;

float outputDelta[outputNodes];

float hiddenDelta[hiddenNodes];

Nano module D unit #2 of 108 114 www.elegantAI.org

http://www.elegantAI.org

float changeHiddenWeights[inputNodes + 1][hiddenNodes];

float learningRate = 0.5;

float momentum = 0.9;

float changeOutputWeights[hiddenNodes + 1][outputNodes];

const int input[truthTable][inputNodes] = {

 { 0, 0 },

 { 1, 0 },

 { 0, 1 },

 { 1, 1 }

};

const int target[truthTable][outputNodes] = {

 { 0 },

 { 1 },

 { 1 },

 { 0 }

};

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(LEDR, OUTPUT);

 pinMode(LEDG, OUTPUT);

 pinMode(buttonPin1, INPUT_PULLUP);

 pinMode(buttonPin2, INPUT_PULLUP);

 randomSeed(analogRead(4));

 for (a = 0; a < truthTable; a++)

 {

 randomisedTT[a] = a;

 }

}

Nano module D unit #2 of 109 114 www.elegantAI.org

http://www.elegantAI.org

void loop()

{

 if (training == true)

 {

 digitalWrite(LEDR, LOW);

 digitalWrite(LEDG, HIGH);

 for (int i = 0; i < hiddenNodes; i++)

 {

 for (int j = 0; j <= inputNodes; j++)

 {

 hiddenWeights[j][i] = float(random(100))/100;

 }

 }

 for (int i = 0; i < outputNodes; i++)

 {

 for (int j = 0; j <= hiddenNodes; j++)

 {

 outputWeights[j][i] = float(random(100))/100;

 }

 }

 for (trainingCycle = 0; trainingCycle < 10000; trainingCycle+
+)

 {

 for (a = 0; a < truthTable; a++)

 {

 b = random(truthTable);

 c = randomisedTT[a];

 randomisedTT[a] = randomisedTT[b];

 randomisedTT[b] = c;

 }

Nano module D unit #2 of 110 114 www.elegantAI.org

http://www.elegantAI.org

 error = 0;

 for (b = 0; b < truthTable; b++)

 {

 a = randomisedTT[b];

 for (i = 0; i < hiddenNodes; i++)

 {

 sum = hiddenWeights[inputNodes][i];

 for (j = 0; j < inputNodes; j++)

 {

 sum += input[a][j] * hiddenWeights[j][i];

 }

 hidden[i] = 1 / (1 + exp(-sum));

 }

 for (i = 0; i < outputNodes; i++)

 {

 sum = outputWeights[hiddenNodes][i];

 for (j = 0; j < hiddenNodes; j++)

 {

 sum += hidden[j] * outputWeights[j][i];

 }

 output[i] = 1 / (1 + exp(-sum));

 outputDelta[i] = (target[a][i] - output[i]) * output[i]
* (1 - output[i]);

 error += 0.5 * (target[a][i] - output[i]) * (target[a]
[i] - output[i]);

 }

 for (i = 0; i < hiddenNodes; i++)

 {

 sum = 0;

 for (j = 0; j < outputNodes; j++)

Nano module D unit #2 of 111 114 www.elegantAI.org

http://www.elegantAI.org

 {

 sum += outputWeights[i][j] * outputDelta[j];

 }

 hiddenDelta[i] = sum * hidden[i] * (1 - hidden[i]);

 }

 for (i = 0; i < hiddenNodes; i++)

 {

 changeHiddenWeights[inputNodes][i] = learningRate *
hiddenDelta[i] + momentum * changeHiddenWeights[inputNodes][i];

 hiddenWeights[inputNodes][i] +=
changeHiddenWeights[inputNodes][i];

 for (j = 0; j < inputNodes; j++)

 {

 changeHiddenWeights[j][i] = learningRate * input[a]
[j] * hiddenDelta[i] + momentum * changeHiddenWeights[j][i];

 hiddenWeights[j][i] += changeHiddenWeights[j][i];

 }

 }

 for (i = 0; i < outputNodes; i++)

 {

 changeOutputWeights[hiddenNodes][i] = learningRate *
outputDelta[i] + momentum * changeOutputWeights[hiddenNodes][i];

 outputWeights[hiddenNodes][i] +=
changeOutputWeights[hiddenNodes][i];

 for (j = 0; j < hiddenNodes; j++)

 {

 changeOutputWeights[j][i] = learningRate * hidden[j]
* outputDelta[i] + momentum * changeOutputWeights[j][i];

 outputWeights[j][i] += changeOutputWeights[j][i];

 }

 }

 }

Nano module D unit #2 of 112 114 www.elegantAI.org

http://www.elegantAI.org

 }

 training = false;

 digitalWrite(LEDR, HIGH);

 digitalWrite(LEDG, LOW);

 Serial.print(" error = ");

 Serial.println(error, 5);

 }

 buttons();

}

void buttons()

{

 inputPin1 = digitalRead(buttonPin1);

 inputPin2 = digitalRead(buttonPin2);

 if (inputPin1 == LOW && inputPin2 == HIGH)

 {

 a = 1;

 }

 else if (inputPin1 == HIGH && inputPin2 == LOW)

 {

 a = 2;

 }

 else if (inputPin1 == LOW && inputPin2 == LOW)

 {

 a = 3;

 }

 else

 {

 a = 0;

 }

 for (i = 0; i < hiddenNodes; i++)

 {

Nano module D unit #2 of 113 114 www.elegantAI.org

http://www.elegantAI.org

🗒 Notes

When you press one button, it should switch the LED on, and when you
press both, the LED should switch off.

 sum = hiddenWeights[inputNodes][i];

 for (j = 0; j < inputNodes; j++)

 {

 sum += input[a][j] * hiddenWeights[j][i];

 }

 hidden[i] = 1 / (1 + exp(-sum));

 }

 for (i = 0; i < outputNodes; i++)

 {

 sum = outputWeights[hiddenNodes][i];

 for (j = 0; j < hiddenNodes; j++)

 {

 sum += hidden[j] * outputWeights[j][i];

 }

 output[i] = 1 / (1 + exp(-sum));

 Serial.println(output[i], 5);

 }

 for (i = 0; i < outputNodes; i++)

 {

 analogWrite(ledPin, int(output[i] * 255));

 }

}

Nano module D unit #2 of 114 114 www.elegantAI.org

http://www.elegantAI.org

